[过程挖掘 Process Mining] Conformance Checking(二)
文章目录
1.3 Conformance Checking Using Token-Based Replay
使用因果足迹的一致性检查。这种方法有各种各样的问题。例如,它不考虑跟踪的频率,也不实际查看行为。
现在一种更精确的基于令牌的重播方法。让我们看一个例子,我们看到一个跟踪,这个跟踪不适合这个模型。如果我们只考虑完全迹的适合度,我们会说,这个迹的适合度为零,因为它不适合。这样的答案并不是很有用,因为我们想从事件的层面来考察适合性和一致性。因为如果我们有很长的痕迹,那么我们可能会有日志,其中没有任何痕迹是真正合适的。我们将得到0的一致性,但这将是一个非常误导的数字。所以,我们需要看一看合适的事件和不合适的事件的比例。这是通过计算所谓的丢失和剩余令牌来完成的,为了说明这一点,让我们在这个模型上重放这个跟踪。
所以我们先执行a,在执行a之后执行b,我们仍然没有看到任何问题。但在这样做的同时,我们正在生产和消费代币。然后,事件日志说我们需要执行e,但是e没有被启用。所以我们计算一个丢失的令牌,你看到有一个问题,我们记录下来,然后继续。然后我们执行e,在执行e之后,我们需要执行g,并且我们没有遇到任何额外的问题,除了当我们到达跟踪的末尾时,仍然有一个令牌留在后面。
所以在这个例子中,我们有一个剩余的令牌和一个丢失的令牌。总共有六个产生的代币,有六个消耗的代币,有一个丢失的代币和一个剩余的代币。所以,我们可以把这些放进一个公式里,这个公式把适合度计算成一个介于0和1之间的数字。0表示适配度尽可能差,适配度为1表示适配度完美,轨迹可以在不遇到任何问题的情况下重放。
在这种情况下,p和c等于6,m和r等于1。如果我们把它填入这个公式,我们得到这个特殊轨迹的一致性为0.83。那么这种方法基于什么呢?它是基于简单的计算数量生产,消费,丢失和剩余的代币(token)。丢失的令牌是在不存在时被消耗的令牌。所以我们需要添加一个令牌,计数器r是指最后留下的令牌。没有被消耗掉。所以,在回放一个轨迹的时候。在任何时间点,place都包含p+m减去c的记号,这个数字应该是正数,因为place中的记号数不能是负数。最后,我们希望这里空无一人。这导致了这里显示的几个不变量。如果你重放的话,p+m总是大于或等于c,因为一个地方不能有负数的记号。C也将至少是m,因为我们永远不会添加丢失的令牌,如果它们不需要消费的话。最后,r是这个地方剩余的代币(token)数量,所以r等于p加m减c。所有这些数字,都在一个地方的水平上。但它们也适用于流程模型中的所有地方。在开始和结束时都需要一个特殊的步骤,因此在开始时环境需要为源位置生成一个令牌。
最后,环境需要使用来自接收器的令牌。注意,在后一种情况下,如果在跟踪末尾的最后一个位置上没有剩余的令牌,您仍然需要使用它。因此,这将添加一个额外的丢失令牌,如果它不在那里的话。这样我们就可以真正检查跟踪是否在所需的最终状态下终止。
让我们看一些例子,在这里你会看到一个非常合适的轨迹。因此,如果我们重放它,我们期望计数器m和r将保持为0。但是,我们仍然需要理解这个原理,所以,要想简单地开始,我们就要看一些非常适合的东西。最初,环境将令牌放入这个源位置。这意味着我们需要将p计数器增加1,就像这里发生的那样。现在,事件日志显示a是要执行的第一个活动。所以在Petri网中,我们被迫触发a,如果我们执行a,我们消耗一个令牌,产生两个令牌。所以我们更新相应的计数器,现在我们总共有三个生成的令牌。在下一步中,我们需要执行c,再次使用并生成一个令牌,更新一个计数器,我们需要执行d。同样,我们添加一个消费的和一个生产的令牌。然后事件日志说我们需要执行一个e,这确实是可能的。现在我们消费两个代币,生产一个代币。所以现在c计数器,被设置为5。然后我们进行活动h,并在place ends上达到标记的状态。现在环境,接受这个令牌并消耗它。所以我们更新了c计数器,最后我们看到p等于7,c等于7,m和