偏差Bias和方差Variance的区别 不要只会画靶子图 P值

偏差 Bias

偏差指的是由所有采样得到的大小为m的训练数据集训练出的所有模型的输出的平均值和真实模型输出之间的偏差。

方差 Variance

方差指的是由所有采样得到的大小为m的训练数据集训练出的所有模型的输出的方差。方差通常是由于模型的复杂度相对于训练样本数m过高导致的,比如一共有100个训练样本,而我们假设模型是阶数不大于200的多项式函数。由方差带来的误差通常体现在测试误差相对于训练误差的增量上。

Bagging

Bagging是Bootstrap Aggregate的简称,意思就是再抽样,即每一次从原始数据中根据均匀概率分布有放回的抽取和原始数据大小相同的样本集合,样本点可能出现重复,然后对每一次产生的训练集构造一个分类器,再对分类器进行组合。

Bagging是减小方差的优化。假设有n个完全独立的模型,每个方差为 σ 2 \sigma^2 σ2,也就是说 V a r ( X i ) = σ 2 Var(X_i)=\sigma^2 Var(Xi)=σ2,那么
V a r ( 1 n ∑ i = 1 n X i ) = 1 n 2 V a r ( ∑ i = 1 n X i ) = σ 2 n Var(\frac{1}{n}\sum_{i=1}^nX_i)=\frac{1}{n^2}Var(\sum_{i=1}^n{X_i})=\frac{\sigma^2}{n} Var(n1i=1nXi)=n21Var(i=1nXi)=nσ2
但是Bagging的过程中有放回,假设单模型的相关系数是p,那么
V a r ( 1 n ∑ i = 1 n X i ) = p σ 2 + ( 1 − p ) σ 2 n Var(\frac{1}{n}\sum_{i=1}^nX_i)=p\sigma^2+(1-p)\frac{\sigma^2}{n} Var(n1i=1nXi)=pσ2+(1p)nσ2,随着n增大,最终趋向于 p n σ 2 \frac{p}{n}\sigma^2 npσ2,因此Bagging会是减小方差的优化

P值

P值(P value)就是当原假设为真时,比所得到的样本观察结果更极端的结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。

Bias Variance Dilemma,即偏差方差困境,是机器学习中的一个重要概念。在训练模型时,我们希望模型能够很好地拟合训练数据,同时也要具有很好的泛化能力,即能够对未见过的数据进行准确的预测。但是,在实际应用中,模型可能会出现两种问题,即偏差方差偏差指的是模型对训练数据的拟合程度不够好,无法很好地捕捉数据中的关系。而方差则指的是模型过度拟合了训练数据,导致对未见过的数据的预测准确度下降。 为了更好地理解偏差方差,我们可以将测试误差分解为偏差方差之和的形式: $Error(x) = Bias^2(x) + Variance(x) + \epsilon$ 其中,$Error(x)$ 表示在输入为 $x$ 时的测试误差,$Bias(x)$ 表示模型预测结果与真实结果之间的偏差,$Variance(x)$ 表示模型预测结果的方差,$\epsilon$ 表示噪声的影响。 推导过程如下: 首先,我们有一个真实的数据分布 $y=f(x)+\epsilon$,其中 $f(x)$ 表示真实的关系,$\epsilon$ 表示噪声。 假设我们使用一个模型 $h(x)$ 来拟合真实的数据分布,那么预测结果为 $\hat{y}=h(x)$。 预测结果与真实结果之间的误差为: $Err(x) = \hat{y} - y = h(x) - f(x) - \epsilon$ 对上式进行求平方,并对误差取期望,得到: $E[(Err(x))^2] = E[(h(x)-f(x)-\epsilon)^2]$ 将上式展开,得到: $E[(Err(x))^2] = E[h(x)^2] + E[f(x)^2] + E[\epsilon^2] - 2E[h(x)f(x)] - 2E[h(x)\epsilon] + 2E[f(x)\epsilon]$ 根据方差和协方差的定义,可以将上式进一步拆分为: $E[(Err(x))^2] = [E[h(x)] - f(x)]^2 + E[h(x)^2] - [E[h(x)] - f(x)]^2 + E[\epsilon^2]$ $+ 2[E[h(x)f(x)] - E[h(x)]f(x)] - 2[E[h(x)\epsilon] - E[h(x)]E[\epsilon]] + 2[E[f(x)\epsilon] - f(x)E[\epsilon]]$ 整理后,得到: $E[(Err(x))^2] = Bias^2[x] + Variance[x] + \epsilon$ 其中,$Bias[x] = E[h(x)] - f(x)$ 表示偏差,$Variance[x] = E[h(x)^2] - E[h(x)]^2$ 表示方差,$\epsilon$ 表示噪声。 从上式可以看出,测试误差可以分解为偏差方差和噪声三部分。偏差方差之间存在一种权衡关系,即减小偏差会增加方差,减小方差会增加偏差。因此,我们需要在偏差方差之间寻求一个平衡,以获得更好的泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值