LeetCode 552. Student Attendance Record II 斐波拉契 log(n)

231 篇文章 0 订阅

Given a positive integer n, return the number of all possible attendance records with length n, which will be regarded as rewardable. The answer may be very large, return it after mod 109 + 7.

A student attendance record is a string that only contains the following three characters:

 

  1. 'A' : Absent.
  2. 'L' : Late.
  3. 'P' : Present.

 

A record is regarded as rewardable if it doesn't contain more than one 'A' (absent) or more than two continuous 'L' (late).

Example 1:

Input: n = 2
Output: 8 
Explanation:
There are 8 records with length 2 will be regarded as rewardable:
"PP" , "AP", "PA", "LP", "PL", "AL", "LA", "LL"
Only "AA" won't be regarded as rewardable owing to more than one absent times. 

 

Note: The value of n won't exceed 100,000.

------------------------------------------------------

DP of O(n) is easy:

class Solution:
    def checkRecord(self, n: int) -> int:
        #fp[i] =fp[i-1]+fl[i-1]
        #fl[i] =fp[i-1]
        #fa[i] =fp[i-1]+fl[i-1]
        #fap[i]=fap[i-1]+fal[i-1]+fa[i-1]
        #fal[i]=fap[i-1]+fa[i-1]
        large = 10**9+7
        fp_pre,fl_pre,fa_pre,fap_pre,fal_pre,fall_pre,fll_pre = 1,1,1,0,0,0,0
        for i in range(1,n):
            fp = (fp_pre+fl_pre+fll_pre)%large
            fl = fp_pre%large
            fa = (fp_pre+fl_pre+fll_pre)%large
            fap = (fap_pre+fa_pre+fal_pre+fall_pre)%large
            fal = (fap_pre+fa_pre)%large
            fall = fal_pre%large
            fll = fl_pre%large
            fp_pre,fl_pre,fa_pre,fap_pre,fal_pre,fall_pre,fll_pre = fp,fl,fa,fap,fal,fall,fll
        print(fp_pre,fl_pre,fa_pre,fap_pre,fal_pre,fall_pre,fll_pre)
        return (fp_pre+fl_pre+fa_pre+fap_pre+fal_pre+fall_pre+fll_pre)%large

Improve it to O(log(n)) by fib intution:

import numpy as np
class Solution(object):
    # fp_pre0, fl_pre1, fa_pre2, fap_pre3, fal_pre4, fall_pre5, fll_pre6 = 1, 1, 1, 0, 0, 0, 0
    # for i in range(1, n):
    #     fp = (fp_pre + fl_pre + fll_pre) % large
    #     fl = fp_pre % large
    #     fa = (fp_pre + fl_pre + fll_pre) % large
    #     fap = (fap_pre + fa_pre + fal_pre + fall_pre) % large
    #     fal = (fap_pre + fa_pre) % large
    #     fall = fal_pre % large
    #     fll = fl_pre % large
    #
    def checkRecord(self, n):
        A = np.matrix([[1,1,0,0,0,0,1],
                       [1,0,0,0,0,0,0],
                       [1,1,0,0,0,0,1],
                       [0,0,1,1,1,1,0],
                       [0,0,1,1,0,0,0],
                       [0,0,0,0,1,0,0],
                       [0,1,0,0,0,0,0]])
        #print(A**n)
        n -= 1
        power = A
        mod = 10**9 + 7
        while n:
            if n & 1:
                power = (power * A) % mod
            A = A**2 % mod
            n //= 2
        #print(power)
        return int(sum(power[:,0]))%mod

 

【资源介绍】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,也可以作为小白实战演练和初期项目立项演示的重要参考借鉴资料。 3、本资源作为“学习资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研和多多调试实践。 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值