kvcache原理、参数量、代码详解

kv cache原理

kvcache一句话来说就是把每个token在过Transformer时乘以W_K,W_V这俩参数矩阵的结果缓存下来。训练的时候不需要保存。推理解码生成时都是自回归auto-regressive的方式,也就是每次生成一个token,都要依赖之前token的结果。如果没生成一个token的时候乘以W_K,W_V这俩参数矩阵要对所有token都算一遍,代价非常大,所以缓存起来就叫kvcache。
举个例子,假如prompt=“The largest city of China is”,输入是6个tokens,返回是"Shang Hai"这两个tokens。整个生成过程如下:

  1. 当生成"Shang"之前,kvcache把输入6个tokens都乘以W_K,W_V这两参数矩阵,也就是缓存了6个kv。这时候过self-attention+采样方案(greedy、beam、top k、top p等),得到"Shang"这个token
  2. 当生成"Shang"之后,再次过transformer的token只有"Shang"这一个token,而不是整个“The largest city of China is Shang”句子,这时再把"Shang"这一个token对应的kvcache和之前6个tokens对应的kvcache拼起来,成为了7个kvcache。"Shang"这一个token和前面6个tokens就可以最终生成"Hai"这个token

为什么有kv cache,没有q cache?

一句话来说q cache并没有用。展开解释就是整个scaled dot production公式 s o f t m a x ( Q K T d k ) V softmax(\frac{QK^T}{\sqrt{d_k}})V softmax(dk QKT)V,每次新多一个Q中的token时,用新多的这个token和所有tokens的K、V去乘就好了,Q cache就成多余的了。再拿刚才例子强调一下,当生成"Shang"之后,再次过transformer的token只有"Shang"这一个token,而不是整个“The largest city of China is Shang”句子

那么问题就又来了,生成"Shang"这个token时,感觉是“The largest city of China is”这6个tokens的query都用了,但是生成"Hai"这个token时,只依赖了"Shang"这个token的query嘛?这个问题其实是没有的,每个token的生成都只依赖前一个Q和之前所有的KV!!!借用https://www.omrimallis.com/posts/understanding-how-llm-inference-works-with-llama-cpp/#further-optimizing-subsequent-iterations里的下图来看:

  • 训练的时候’Quant’,‘um’,'_mechan’的下一个token在矩阵乘法时对应的是蓝框,被mask没了
  • 推理的时候在给定’Quant’,‘um’,'_mechan’的时候,已有的序列长度是3,矩阵乘法是由图中红框决定的,刚好和未来没读到的蓝框token没有任何关系。同时,‘_mechan’的下一个token只和’_mechan’的Q有关,和’Quant’,'um’的Q是无关的!!!所以每个token的生成都只依赖前一个Q和之前所有的KV,这也是kvcache能work下去的基础

在这里插入图片描述

kv cache参数量估计

假设输入序列的长度为s,输出序列的长度为n,层数为l,以float16来保存KV cache,那么KV cache的峰值显存占用大小为 b ∗ ( s + n ) h ∗ l ∗ 2 ∗ 2 = 4 l h ( s + n ) b*(s+n)h*l*2*2 =4lh(s +n) b(s+n)hl22=4lh(s+n)。这里第一个2表示K/V cache,第个2表示float16占2个bytes。
以GPT3为例,对比KV cache与模型参数占用显存的大小。GPT3模型占用显存大小为350GB。假设批次大小b=64,输入序列长度 =512,输出序列长度n =32,则KV cache占用显存大约为 4 l h ( s + n ) 4lh(s + n) 4lh(s+n)= 164,282,499,072bytes约等于164GB,大约是模型参数显存的0.5倍

提供一个删减版的kvcache代码

class GPT2Attention(nn.Module):
    def __init__(self):
        super().__init__()
        # ...
    def forward(
        self,
        hidden_states: Optional[Tuple[torch.FloatTensor]],
        layer_past: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
        # hidden_states对应query
        # encoder_hidden_states对应key和value
        if encoder_hidden_states is not None:
            if not hasattr(self, "q_attn"):
                raise ValueError(
                    "If class is used as cross attention, the weights `q_attn` have to be defined. "
                    "Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
                )

            query = self.q_attn(hidden_states)
            key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
            attention_mask = encoder_attention_mask
        else:
            query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)

        query = self._split_heads(query, self.num_heads, self.head_dim)
        key = self._split_heads
03-18
<think>好的,我现在需要处理用户关于KvCache的使用方法和错误排查的问题。首先,我得回忆一下KvCache是什么,通常在什么场景下使用。记得在Transformer模型中,KvCache用于存储键和值的中间结果,以加速自注意力机制的计算,特别是在生成式任务中,比如文本生成,这样可以避免重复计算之前的token,从而提升效率。 接下来,用户可能需要了解具体的使用方法。我应该分步骤说明,比如初始化、缓存更新、复用缓存等。同时,要结合示例代码,这样用户更容易理解。另外,用户可能遇到的常见错误,比如内存不足、形状不匹配、缓存未正确更新等,需要逐一分析并提供排查步骤。 在错误排查部分,需要指导用户如何检查内存使用、张量形状、缓存更新逻辑,以及如何利用工具进行调试。可能还需要引用一些资料,比如DeepSeek-R1的部署教程,或者OceanBase中处理大SQL的方法,但要注意这些引用是否相关。例如,引用[3]提到KTransformers的部署,可能与KvCache的实现有关,可以引用。而引用[4]涉及内存问题,虽然来自不同系统,但排查内存的方法可能有共通之处,可以适当提及。 另外,要注意用户提到的系统级指令,比如数学公式用$...$,独立公式用$$...$$,确保LaTeX语法正确。例如,在解释计算复杂度时,可能需要用到公式,比如时间复杂度$O(n^2)$。不过当前问题主要涉及代码和步骤,可能数学公式较少,但如果有相关部分需要注意格式。 用户还要求生成相关问题,我需要考虑用户可能进一步询问的方向,比如性能优化、具体框架中的实现细节、与其他缓存机制的对比等。这些问题需要贴合KvCache的常见应用场景和潜在问题。 最后,确保回答结构清晰,分点说明,使用代码块示例,并正确添加引用标记。检查是否有遗漏的要点,比如是否正确使用引用,是否覆盖了使用方法和错误排查的主要方面,语言是否简洁明了,符合中文表达习惯。</think>### KvCache 使用方法与错误排查指南 #### 一、KvCache 基本概念 KvCache(Key-Value Cache)是Transformer模型中用于加速自注意力机制计算的缓存技术,通过存储历史token的键(Key)和值(Value)矩阵,避免重复计算生成式任务中的历史token,显著降低计算复杂度[^3]。 #### 二、KvCache 使用方法 1. **初始化缓存** 在推理开始时创建空缓存: ```python # 示例:使用Hugging Face Transformers库 from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("gpt2") past_key_values = None # 初始化缓存 ``` 2. **逐token生成时更新缓存** 每次生成新token时传入并更新缓存: ```python input_ids = tokenizer.encode("DeepSeek-R1", return_tensors="pt") for _ in range(max_length): outputs = model(input_ids, past_key_values=past_key_values) logits = outputs.logits past_key_values = outputs.past_key_values # 更新缓存 next_token = logits.argmax(-1)[:,-1:] input_ids = next_token ``` 3. **长文本处理的缓存复用** 对超过上下文窗口的文本进行分块处理: ```python chunk_size = 2048 for i in range(0, len(text), chunk_size): chunk = text[i:i+chunk_size] outputs = model(chunk, past_key_values=past_key_values) past_key_values = outputs.past_key_values # 跨块复用缓存 ``` #### 三、常见错误排查 1. **内存溢出问题** - **现象**:`CUDA out of memory`错误 - **排查步骤**: 1. 检查缓存张量是否未及时释放: ```python del past_key_values # 显式释放缓存 torch.cuda.empty_cache() ``` 2. 监控显存使用: ```python print(torch.cuda.memory_allocated()/1024**3, "GB used") # 输出显存用量 ``` 3. 参考大内存SQL监控方法,设置阈值告警[^4] 2. **形状不匹配错误** - **现象**:`size mismatch`或`dimension out of range` - **解决方案**: - 检查层数匹配:`num_layers`需与模型配置一致 - 验证维度对齐:`hidden_size % num_attention_heads == 0` 3. **缓存更新失效** - **现象**:生成结果出现重复或逻辑断裂 - **调试方法**: ```python # 检查缓存更新状态 print(past_key_values[0][0].shape) # 预期形状:(batch_size, num_heads, seq_len, head_dim) # 对比相邻步骤的缓存差异 torch.testing.assert_close(new_cache[0], old_cache[0]) # 应触发断言错误 ``` 4. **分布式训练问题** - **参考OBproxy路由策略**:确保多卡训练时缓存路由正确[^2] - 典型错误模式: ```python # 错误示例:未同步跨设备缓存 past_key_values = tuple( layer.to(device) for layer in past_key_values # 必须显式设备迁移 ) ``` #### 四、性能优化建议 1. **量化压缩**:对缓存使用FP16或INT8量化 2. **选择性缓存**:实现类似OBServer的缓存淘汰策略 3. **批处理优化**:采用类似KTransformers的延迟拼接技术
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值