如何通俗理解 beta分布、汤普森采样和狄利克雷分布

如果想理解汤普森采样算法,就必须先熟悉了解贝塔分布。 

一次伯努利实验(比如扔硬币,二元变量)叫做伯努利分布(Bernoulli distribution)。多次伯努利实验叫做二项式分布(Binomial distribution,还是二元变量),加个先验就是beta分布。

二项式分布变成多元就成了多项式分布(multinomial distribution),beta分布搞到多元就是Dirichlet分布。

Dirichlet分布是Beta分布的多元推广。Beta分布是二项式分布的共轭分布,Dirichlet分布是多项式分布的共轭分布。通常情况下,我们说的分布都是关于某个参数的函数,把对应的参数换成一个函数(函数也可以理解成某分布的概率密度)就变成了关于函数的函数。于是,把Dirichlet分布里面的参数换成一个基分布就变成了一个关于分布的分布了。那么它就是Dirichlet过程了。可以参考如下资料:

Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程) | 学习数据 | 数据学习者官方网站

一、Beta(贝塔)分布

Beta分布是一个定义在[0,1]区间上的连续概率分布族,它有两个正值参数,称为形状参数,一般用α和β表示,Beta分布的概率密度函数形式如下:

这里的Γ表示gamma函数。

Beta分布的均值是:

                             

方差:

                

Beta分布的图形(概率密度函数):

从Beta分布的概率密度函数的图形我们可以看出,Beta分布有很多种形状,但都是在0-1区间内,因此Beta分布可以描述各种0-1区间内的形状(事件)。因此,它特别适合为某件事发生或者成功的概率建模。同时,当α=1,β=1的时候,它就是一个均匀分布。

贝塔分布主要有 α和 β两个参数,这两个参数决定了分布的形状,从上图及其均值和方差的公式可以看出:

1)α/(α+β)也就是均值,其越大,概率密度分布的中心位置越靠近1,依据此概率分布产生的随机数也多说都靠近1,反之则都靠近0。

2)α+β越大,则分布越窄,也就是集中度越高,这样产生的随机数更接近中心位置,从方差公式上也能看出来。

二、举例理解Beta分布

贝塔分布可以看作是一个概率的分布,当我们不知道一个东西的具体概率是多少时,它给出了所有概率出现的可能性大小,可以理解为概率的概率分布。

以棒球为例子:

  棒球运动的一个指标就是棒球击球率,就是用一个运动员击中的球数除以总的击球数,一般认为0.27是一个平均的击球水平,如果击球率达到0.3就会认为非常优秀了。如果我们要预测一个棒球运动员,他整个赛季的棒球击球率,怎么做呢?你可以直接计算他目前的棒球击球率,用击中数除以击球数。但是,这在赛季开始阶段时是很不合理的。假如这个运动员就打了一次,还中了,那么他的击球率就是100%;如果没中,那么就是0%,甚至打5、6次的时候,也可能运气爆棚全中击球率100%,或者运气很糟击球率0%,所以这样计算出来的击球率是不合理也是不准确的。

      为什么呢?

    当运动员首次击球没中时,没人认为他整个赛季都会一次不中,所以击球率不可能为0。因为我们有先验期望,根据历史信息,我们知道击球率一般会在0.215到0.36之间。如果一个运动员一开始打了几次没中,那么我们知道他可能最终成绩会比平均稍微差一点,但是一般不可能会偏离上述区间,更不可能为0。

  如何解决呢?

    一个最好的方法来表示这些先验期望(统计中称为先验(prior))就是贝塔分布,表示在运动员打球之前,我们就对他的击球率有了一个大概范围的预测。假设我们预计运动员整个赛季的击球率平均值大概是0.27左右,范围大概是在0.21到0.35之间。那么用贝塔分布来表示,我们可以取参数 α=81,β=219,因为α/(α+β)=0.27,图形分布也主要集中在0.21~0.35之间,非常符合经验值,也就是我们在不知道这个运动员真正击球水平的情况下,我们先给一个平均的击球率的分布。

假设运动员一次击中,那么现在他本赛季的记录是“1次打中;1次打击”。那么我们更新我们的概率分布,让概率曲线做一些移动来反应我们的新信息。

         Beta(α0+hits,β0+misses)   

注:α0,β0是初始化参数,也就是本例中的81,219。hits表示击中的次数,misses表示未击中的次数。

击中一次,则新的贝塔分布为Beta(81+1,219),一次并不能反映太大问题,所以在图形上变化也不大,不画示意图了。然而,随着整个赛季运动员逐渐进行比赛,这个曲线也会逐渐移动以匹配最新的数据。由于我们拥有了更多的数据,因此曲线(击球率范围)会逐渐变窄。假设赛季过半时,运动员一共打了300次,其中击中100次。那么新的贝塔分布是Beta(81+100,219+200),如下图:

可以看出,曲线更窄而且往右移动了(击球率更高),由此我们对于运动员的击球率有了更好的了解。新的贝塔分布的期望值为0.303,比直接计算100/(100+200)=0.333要低,是比赛季开始时的预计0.27要高,所以贝塔分布能够抛出掉一些偶然因素,比直接计算击球率更能客观反映球员的击球水平。

总结:

这个公式就相当于给运动员的击中次数添加了“初始值”,相当于在赛季开始前,运动员已经有81次击中219次不中的记录。 因此,在我们事先不知道概率是什么但又有一些合理的猜测时,贝塔分布能够很好地表示为一个概率的分布。

 三、汤普森采样

 汤普森采样的背后原理正是上述所讲的Beta分布,你把贝塔分布的 a 参数看成是推荐后用户点击的次数,把分布的 b 参数看成是推荐后用户未点击的次数,则汤普森采样过程如下:

  1、取出每一个候选对应的参数 a 和 b;
  2、为每个候选用 a 和 b 作为参数,用贝塔分布产生一个随机数;
  3、按照随机数排序,输出最大值对应的候选;
  4、观察用户反馈,如果用户点击则将对应候选的 a 加 1,否则 b 加 1;

注:实际上在推荐系统中,要为每一个用户都保存一套参数,比如候选有 m 个,用户有 n 个,那么就要保存 2 m n个参数。

汤普森采样为什么有效呢?

1)如果一个候选被选中的次数很多,也就是 a+b 很大了,它的分布会很窄,换句话说这个候选的收益已经非常确定了,就是说不管分布中心接近0还是1都几乎比较确定了。用它产生随机数,基本上就在中心位置附近,接近平均收益。

2)如果一个候选不但 a+b 很大,即分布很窄,而且 a/(a+b) 也很大,接近 1,那就确定这是个好的候选项,平均收益很好,每次选择很占优势,就进入利用阶段。反之则有可能平均分布比较接近与0,几乎再无出头之日

3)如果一个候选的 a+b 很小,分布很宽,也就是没有被选择太多次,说明这个候选是好是坏还不太确定,那么分布就是跳跃的,这次可能好,下次就可能坏,也就是还有机会存在,没有完全抛弃。那么用它产生随机数就有可能得到一个较大的随机数,在排序时被优先输出,这就起到了前面说的探索作用。

python代码实现:

choice = numpy.argmax(pymc.rbeta(1 + self.wins, 1 + self.trials - self.wins))

  • 7
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
狄克雷分布是一种概率分布,常用于多元变量和概率向量的建模。对于一个具有K个维度的随机向量,狄利克雷分布的参数是一个长度为K的向量α=[α1, α2, ..., αK],其中每个αi>0。狄利克雷分布的概率密度函数定义如下: f(x|α) = (1/B(α)) * ∏(x^αi-1) (0<=xi<=1, ∑xi=1) 其中,B(α)是多元贝塔函数,∏表示对于所有i的连乘。狄利克雷分布的随机变量服从于一个概率向量,在每个维度上的取值范围是0到1之间,并且各维度的取值之和为1。 在Matlab中没有现成的工具函数可以直接使用狄利克雷分布。但是你可以根据引用提供的代码来实现一个狄利克雷分布的随机数生成函数drchrnd(a,n),其中a是参数向量,n是生成样本的数量。这个函数利用了gamma分布狄利克雷分布之间的关系,通过生成多个gamma随机变量,并按一定的规则进行归一化,实现了狄利克雷分布的随机数生成。 需要注意的是,生成的随机数是符合狄利克雷分布的概率向量,每个维度的取值范围是0到1之间,并且各维度的取值之和为1。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [狄利克雷分布的matlab代码实现和R语言函数调用](https://blog.csdn.net/sacainiao/article/details/54866385)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值