转载地址:原帖地址
堆排序与快速排序,归并排序一样都是时间复杂度为O(N*logN)的几种常见排序方法。学习堆排序前,先讲解下什么是数据结构中的二叉堆。
二叉堆的定义
二叉堆是完全二叉树或者是近似完全二叉树。
二叉堆满足二个特性:
1.父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值。
2.每个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆)。
当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆。当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆。下图展示一个最小堆:
由于其它几种堆(二项式堆,斐波纳契堆等)用的较少,一般将二叉堆就简称为堆。
堆的存储
一般都用数组来表示堆,i结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如第0个结点左右子结点下标分别为1和2。
堆的操作——插入删除
下面先给出《数据结构C++语言描述》中最小堆的建立插入删除的图解,再给出本人的实现代码,最好是先看明白图后再去看代码。
注意:堆就是优先队列,队列的插入操作都是在队尾进行,删除操作都是在队头进行,不过删除操作需要把最后一个元素补到队列头,这样可以保持二叉堆的结构。
堆的插入
每次插入都是将新数据放在数组最后。可以发现从这个新数据的父结点到根结点必然为一个有序的数列,现在的任务是将这个新数据插入到这个有序数据中——这就类似于直接插入排序中将一个数据并入到有序区间中,对照《白话经典算法系列之二 直接插入排序的三种实现》不难写出插入一个新数据时堆的调整代码:
上滤步骤:
- // 新加入i结点 其父结点为(i - 1) / 2
- void MinHeapFixup(int a[], int i)
- {
- int j, temp;
- temp = a[i];
- j = (i - 1) / 2; //父结点
- while (j >= 0 && i != 0)
- {
- if (a[j] <= temp)
- break;
- a[i] = a[j]; //把较大的子结点往下移动,替换它的子结点
- i = j;
- j = (i - 1) / 2;
- }
- a[i] = temp;
- }
插入操作(堆尾操作):
- //在最小堆中加入新的数据nNum
- void MinHeapAddNumber(int a[], int n, int nNum)
- {
- a[n] = nNum;
- MinHeapFixup(a, n);
- }
堆的删除
按定义,堆中每次都只能删除第0个数据。为了便于重建堆,实际的操作是将最后一个数据的值赋给根结点,然后再从根结点开始进行一次从上向下的调整。调整时先在左右儿子结点中找最小的,如果父结点比这个最小的子结点还小说明不需要调整了,反之将父结点和它交换后再考虑后面的结点。相当于从根结点将一个数据的“下沉”过程。下面给出代码:
下滤步骤:
- // 从i节点开始调整,n为节点总数 从0开始计算 i节点的子节点为 2*i+1, 2*i+2
- void MinHeapFixdown(int a[], int i, int n)
- {
- int j, temp;
- temp = a[i];
- j = 2 * i + 1;
- while (j < n)
- {
- if (j + 1 < n && a[j + 1] < a[j]) //在左右孩子中找最小的
- j++;
- if (a[j] >= temp)
- break;
- a[i] = a[j]; //把较小的子结点往上移动,替换它的父结点
- i = j;
- j = 2 * i + 1;
- }
- a[i] = temp;
- }
删除操作(堆头操作):
- //在最小堆中删除数
- void MinHeapDeleteNumber(int a[], int n)
- {
- Swap(a[0], a[n - 1]);
- MinHeapFixdown(a, 0, n - 1);
- }
堆化数组
有了堆的插入和删除后,再考虑下如何对一个数据进行堆化操作。要一个一个的从数组中取出数据来建立堆吧,不用!先看一个数组,如下图:
很明显,对叶子结点来说,可以认为它已经是一个合法的堆了即20,60, 65, 4, 49都分别是一个合法的堆。只要从A[4]=50开始向下调整就可以了。然后再取A[3]=30,A[2] = 17,A[1] = 12,A[0] = 9分别作一次向下调整操作就可以了。下图展示了这些步骤:
写出堆化数组的代码:
- //建立最小堆
- void MakeMinHeap(int a[], int n)
- {
- for (int i = n / 2 - 1; i >= 0; i--)
- MinHeapFixdown(a, i, n);
- }
(注:i=n/2-1,除以2是因为只需要下滤时父节点会和叶子节点比较,所有只需要下滤所有非叶子节点。-1是因为c++中数组是从0开始计数)
至此,堆的操作就全部完成了(注1),再来看下如何用堆这种数据结构来进行排序。
堆排序
首先可以看到堆建好之后堆中第0个数据是堆中最小的数据。取出这个数据再执行下堆的删除操作。这样堆中第0个数据又是堆中最小的数据,重复上述步骤直至堆中只有一个数据时就直接取出这个数据。
由于堆也是用数组模拟的,故堆化数组后,第一次将A[0]与A[n - 1]交换,再对A[0…n-2]重新恢复堆。第二次将A[0]与A[n – 2]交换,再对A[0…n - 3]重新恢复堆,重复这样的操作直到A[0]与A[1]交换。由于每次都是将最小的数据并入到后面的有序区间,故操作完成后整个数组就有序了。有点类似于直接选择排序。
- void MinheapsortTodescendarray(int a[], int n)
- {
- for (int i = n - 1; i >= 1; i--)
- {
- Swap(a[i], a[0]);
- MinHeapFixdown(a, 0, i);
- }
- }
注意使用最小堆排序后是递减数组,要得到递增数组,可以使用最大堆。
由于每次重新恢复堆的时间复杂度为O(logN),共N - 1次重新恢复堆操作,再加上前面建立堆时N / 2次向下调整,每次调整时间复杂度也为O(logN)。二次操作时间相加还是O(N * logN)。故堆排序的时间复杂度为O(N * logN)。
下面自己写的堆排序完整算法:(这里是采用小顶堆,得到的是递减数组,如果想改成大顶堆,修改一下判断条件即可)
注意:堆排序用的是删除节点(下滤操作)、建立堆化数组
#include <iostream>
using namespace std;
void swap( int &a, int &b )
{
int temp;
temp = a;
a = b;
b = temp;
}
//下滤步骤
void MinHeapFixdown(int a[],int i,int n)
{
int j,temp;
temp = a[i];
j = 2*i + 1;
while( j<n )
{
if( a[j]>a[j+1] && j+1<n )
j++;
if( a[j]>=temp )
break;
else
{
a[i] = a[j];
i = j;
j = i*2+1;
}
}
a[i] = temp;
}
//在最小堆中删除数,队列头操作
void MinHeapDeleteNum(int a[], int n)
{
swap(a[0], a[n-1]);
MinHeapFixdown(a, 0 ,n-1);
}
//建立堆化数组(下滤所有的非叶子节点,所以是n/2-1,-1是因为数组从0开始计数)
void MakeMinHeap(int a[], int n)
{
for (int i = n / 2 - 1; i >= 0; i--)
MinHeapFixdown(a, i, n);
}
//堆排序
void HeapSort(int a[], int n)
{
for(int i=n-1; i>=1; i--)
{
swap( a[i], a[0] );
MinHeapFixdown(a, 0, i);
}
}
void main()
{
int a[7] = {5,3,1,4,2,7,6};
cout<<"初始数组为: ";
for(int i=0;i<7;i++)
{
cout<<a[i]<<' ';
}
cout<<endl;
MakeMinHeap(a,7);
cout<<"堆化数组为: ";
for(int i=0;i<7;i++)
{
cout<<a[i]<<' ';
}
cout<<endl;
HeapSort(a,7);
cout<<"堆排序数组: ";
for(int i=0;i<7;i++)
{
cout<<a[i]<<' ';
}
cout<<endl;
}
结果: