机器学习之KNN

一、KNN原理

KNN是机器学习中比较简单的,简单来说就是找到与目标邻近的K个实例,然后分别计算某一分类所占比例,最后找到比例最大的那个类别作为目标分类类别,就与中国的一句古语比较类似:近朱者赤,近墨者黑

二、Python实现过程

因为它的原理比较简单就不过多赘述,因此这里直接讲解如何通过代码进行简单的实现,这里提供两种方法,一种是根据原理直接进行编程实现,另外一种是利用sklearn库实现

实例背景:有三个指标 每年步行公里数, 玩游戏所占时间比例,每周吃甜食数量,用这三个指标判断对一个人的喜欢程度

第一种:

1、对训练数据集进行处理,用矩阵来存储训练数据

原始数据如下:

处理过程如下:def file2matrix(filename):
#打开文件
fr = open(filename)
#读取文件所有内容
arrayOLines = fr.readlines()
#print(arrayOLines)
#得到文件行数
numberOfLines = len(arrayOLines)
#返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
returnMat = np.zeros((numberOfLines,3))
#返回的分类标签向量
classLabelVector = []
#行的索引值
index = 0
for line in arrayOLines:
#s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
line = line.strip()

#使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
listFromLine = line.split('\t')
#print(listFromLine)
#将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
returnMat[index,:] = listFromLine[0:3]
print(listFromLine[-1])
#根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
if listFromLine[-1] == 'didntLike':
classLabelVector.append(1)
elif listFromLine[-1] == 'smallDoses':
classLabelVector.append(2)
elif listFromLine[-1] == 'largeDoses':
classLabelVector.append(3)
index += 1

return returnMat, classLabelVector

2、分类过程

首先计算目标点到实例点之间的距离,这里计算距离的方法有多种,一般用欧式距离

然后对距离进行排序,选择距离最近的前k个

最后,对前k个数据,计算每一类别所占的比例,选择最大的那个就是我们的分类结果

上代码:

def classify0(inX, dataSet, labels, k):
#numpy函数shape[0]返回dataSet的行数
dataSetSize = dataSet.shape[0]
#在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
#二维特征相减后平方
sqDiffMat = diffMat**2
#sum()所有元素相加,sum(0)列相加,sum(1)行相加
sqDistances = sqDiffMat.sum(axis=1)
#开方,计算出距离
distances = sqDistances**0.5
#返回distances中元素从小到大排序后的索引值
sortedDistIndices = distances.argsort()
#定一个记录类别次数的字典
classCount = {}
for i in range(k):
#取出前k个元素的类别
voteIlabel = labels[sortedDistIndices[i]]
#dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
#计算类别次数
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
#python3中用items()替换python2中的iteritems()
#key=operator.itemgetter(1)根据字典的值进行排序
#key=operator.itemgetter(0)根据字典的键进行排序
#reverse降序排序字典
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
print(sortedClassCount)
#返回次数最多的类别,即所要分类的类别

return sortedClassCount[0][0]

在分类之前我们需要对数据进行归一化处理,因为实际数据是比较大的,如果直接采用原数据就是使得数据值大的占的权重大,这样会影响分类结果,因此将数据范围归到0至1之间再做后续分类

第二种:sklearn

加入from sklearn.neighbors import KNeighborsClassifier as kNN

关键代码

neigh=kNN(n_neighbors=3,algorithm='auto')

neigh.fit(normMat[numTestVecs:m,:],classLabelVector[numTestVecs:m])
print(normMat[i,:])
vectorUnderTest =img2vector(normMat[i,:])
print(vectorUnderTest)

classifierResult=neigh.predict(vectorUnderTest)

这里解释一下,normMat[numTestVecs:m,:]为训练数据特征,classLabelVector[numTestVecs:m]为训练数据特征值对应的分类,函数img2vector()为对矩阵做向量处理

这样对比一看,是不是感觉sklearn很强大?就那么几行代码就解决了,虽然它很好用,但是原理我们得搞清楚了,遇到具体问题才能根据需求去解决呢

输出结果如图:

### 回答1: B'educoder机器学习KNN算法'是指在机器学习中,使用KNN(K-最近邻)算法进行数据分类或回归的过程。它通过计算每个样本点与其最近的k个邻居之间的距离来分类或回归。该算法常用于给定一些已经被分类或回归的数据,以对新的、未知的数据进行分类或回归。 ### 回答2: KNN算法是机器学习中最常见的分类算法之一,属于无参数的非线性算法,也是解决分类问题的一种最简单有效的算法之一。KNN全称为K-Nearest Neighbor算法,它的主要思想是如果一个样本在特征空间中的k个最相似(即特征空间中最近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。 KNN算法的主要流程是先将数据集中所有实例按照特征向量之间的距离从小到大进行排序,然后选取相邻的K个样本,根据它们属于的类别计算出该样本的类别,即选取K个样本中出现最多的类别作为该样本的预测类别。通常情况下,K的选择是非常重要的,如果K太小会使得预测错误率变高,而K太大会使得不同的样本预测出的类别相同,从而无法实现分类。 KNN算法的应用非常广泛,包括文本分类、图像识别、推荐系统等领域。由于该算法的思路简单易懂且计算量相对较小,因此它在大数据时代依然被广泛应用。同时,在KNN算法的基础上也有很多改进算法被提出,如KD树、球树等,它们可以有效地提高KNN算法的运行效率和准确率。 在educoder机器学习的学习中,我们可以利用Python语言的scikit-learn库实现KNN算法。该库提供了KNeighborsClassifier类,它可以根据给定的数据集和K值训练KNN分类器,并用来预测新的样本。在使用scikit-learn库进行分类问题解决时,通常需要将数据进行归一化处理,以避免特征之间的差异对结果的影响。同时,还需要采用交叉验证等方法优化模型的参数和选择最优的K值,从而提高KNN算法的准确率和泛化能力。 总的来说,KNN算法是机器学习中一种简单有效的分类算法,它的应用非常广泛。在educoder机器学习的学习中,我们可以通过掌握KNN算法的基本原理和应用方法,来更好地应用这种算法解决实际的分类问题。 ### 回答3: KNN(K-Nearest Neighbor)算法是一种基本的分类和回归算法,经常被用于机器学习中。其基本思想是预测未知的样本所属类别或预测目标值,通过已知的样本集来找到与未知样本最近的K个样本(即K个最近邻)来进行预测。KNN算法的核心是距离度量和K值的选择。 在KNN算法的训练过程中,首先需要将所有样本的特征向量保存在内存里。对于一个未知的样本,计算其与内存中所有样本的距离,并选出离该样本最近的K个样本。可以使用欧式距离或曼哈顿距离来度量距离。在分类问题中,K个邻居样本中占比最大的那个类别即为预测结果;在回归问题中,K个邻居的目标值的平均值或加权平均值即为预测结果。 KNN算法的优点是简单有效,不需要训练过程,可以自适应地进行分类或回归。但也存在缺点,如不善处理多分类问题和高维数据,受样本分布的影响较大等。在实际应用中,可以采用交叉验证和特征选择等手段来解决一些问题。 在educoder机器学习KNN算法教学中,可以学习到该算法的具体实现和应用,如如何选择距离度量、K值的选择和分类与回归问题的应用。同时也可以通过练习和作业来加深对算法的理解和掌握。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值