DBSCAN算法

DBSCAN是一种基于密度的空间聚类算法,通过核心点、直接密度可达和密度可达的概念进行聚类。它能发现任意形状的簇,并且对异常点不敏感。算法工作流程包括随机选择未访问点,检查其ε-邻域内的点数,若满足条件则创建新簇并继续搜索邻域内的点。参数ε和minPts是关键设定,ε定义邻域半径,minPts设定密度阈值。
摘要由CSDN通过智能技术生成

Density-Based Spatial Clusting of Applications with Nosie

1、关键概念

如果某个点的密度达到算法设定的阈值,则为核心点。即半径r的邻域内点的数量不小于minPts

直接密度可达:如果点p在点q的r邻域内,且q是核心点,则成p到q是直接密度可达。

密度可达:如果有点序列:q0,q1,...qk,对任意的qi,qi-1是直接密度可达的,则称从q0到qk是密度可达的。(实际是直接密度可达的“传播”)

密度相连:如果从某个核心点p出发,到点q和点k都是密度可达的,则称点q和点k是密度相连的。

边界点:属于某一类的非核心点。

噪声点:不属于任何一个类簇的点,从任何一个核心点出发都是密度不可达的。

应用:异常检测,聚类。 

2、算法工作流程

1. 标记所有对象为unvisited;
2. Do
3. 随机选择一个unvisited对象p;
4. 标记p为visited;
5. if p的ε-邻域至少有minpts个对象
6.         创建一个新簇C&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值