PCA主成分分析

Principal Component Analysis

用途:降维

目标:提取最优价值的信息(基于方差)

问题:降维后不知道数据表达的含义。

1、原理

 

 

如何找出一组合适的基:

方差就代表数据的离散程度。

 

 

 归一化后的结果。

2、实例

代码地址:https://github.com/create-info/ML_DL_resources/blob/master/pca.ipynb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值