1005 继续(3n+1)猜想:
问题描述
卡拉兹(Callatz)猜想已经在1001中给出了描述。在这个题目里,情况稍微有些复杂。
当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数。例如对 n=3 进行验证的时候,我们需要计算 3、5、8、4、2、1,则当我们对 n=5、8、4、2 进行验证的时候,就可以直接判定卡拉兹猜想的真伪,而不需要重复计算,因为这 4 个数已经在验证3的时候遇到过了,我们称 5、8、4、2 是被 3“覆盖”的数。我们称一个数列中的某个数 n 为“关键数”,如果 n 不能被数列中的其他数字所覆盖。
现在给定一系列待验证的数字,我们只需要验证其中的几个关键数,就可以不必再重复验证余下的数字。你的任务就是找出这些关键数字,并按从大到小的顺序输出它们。
输入格式:
每个测试输入包含 1 个测试用例,第 1 行给出一个正整数 K (<100),第 2 行给出 K 个互不相同的待验证的正整数 n (1<n≤100)的值,数字间用空格隔开。
输出格式:
每个测试用例的输出占一行,按从大到小的顺序输出关键数字。数字间用 1 个空格隔开,但一行中最后一个数字后没有空格。
输入样例:
6
3 5 6 7 8 11
输出样例:
7 6
解决方案:
#include<stdio.h>
#include<string.h>
int main(){
int n;
scanf("%d",&n);
int a[100],b[10000],stat[100];
int j=0;
int final[100],f=0;
int tool,y;
if(n==-1) return 0;
memset(final,-1,sizeof(final));
memset(b,-1,sizeof(b));
memset(a,-1,sizeof(a));
memset(stat,-1,sizeof(stat));
//初始化为0
for(int i=0;i<n;i++){
scanf("%d",&a[i]);
}
for(int i=0;i<n;i++){
stat[i]=a[i];
}
//输入存进数组,并复制一份
for(int i=0;i<n;i++){
while(a[i]>1){
if(a[i]%2!=0){
a[i]=(a[i]*3+1)/2;
b[j++]=a[i];
}
else{
a[i]=a[i]/2;
b[j++]=a[i];
}
}
}
//用b来存储递推过程中所有的数
for(int i=0;b[i]!=-1;i++){
for(int k=0;k<n;k++){
if(stat[k]==b[i]){
stat[k]=-1;
}
}
}
//剔除被覆盖数,剩余未被覆盖数
for(int i=0;i<n;i++){
if(stat[i]!=-1){
final[f]=stat[i];
f++;
}
}
//将零散的未被覆盖数放于最终数组(final)
for(int i=0;i<f;i++){
for(int z=i+1;z<f;z++){
if(final[i]<final[z]){
tool=final[i];
final[i]=final[z];
final[z]=tool;
}
}
}
//排序
for(y=0;y<f-1;y++){
printf("%d ",final[y]);
}
printf("%d",final[y]);
return 0;
}
收获:
最后一个测试点不通过是数组长度不够,
一边debug一边理思路。