dp动态规划-嵌套矩形
题目大意:有n个矩形,每个矩形可以用两个整数a,b表示长和宽,一个矩形X(a,b)可以去嵌套另一个矩形Y(c,d)的条件是:a<c及b<d 或者a<d&&b<c;在这些矩形当中选出最多的矩形,排序之后前面的可以嵌套后面的;
本文是经典的DAG最长路问题,设d(i)为以矩形i结尾的最长链的长度,即,矩形i可以嵌套最多的矩形数量;
状态转移公式为
d(i)=max{0,d(j) | 矩形j可以嵌套在i中)+1;
首先应该对其进行排序 保证d(i)一定大于d(j)!
核心代码
int dp(int j,int f) //使用前d数组应该初始化为0;
{
if (d[j]) return d[j];
int &ans = d[j];
for (int i = 1; i <= n; i++) {
if (g[j][i]&& i != f)。//g[j][i] 表示j至i是否有通路,有则为1,否则为0
ans = max(ans, dp(i, j));
}
return ++ans;
}