LA 4256 salesman 商人

题目大意
给定一个包含n个点的无向连通图和一个长度为L的序列A,要求修改尽量少的数,使得序列中的任意两个相邻数或者相同,或者对应图中两个相邻节点.
分析
因为给定的节点N《100,所以我们把其纳入动态规划的状态当中去
用一个邻接矩阵g表示两个点之间的联通关系,并且重要的一点,我们把自身与自身连通设为1,即g(i,i)=1;方便我们状态转移;我们设d(i,j)表示前i个数以第j个结尾的最小修改数,这样的话状态转移方程为: d(i,j)=min{d(i-1,k)|g(k,j)连通}
代码如下

#include<iostream>
#include<algorithm>
#include<string.h>
#include<cstdio>
#define maxn 200+10
#define inf  0x3f3f3f3f			//设为无穷大;
using namespace std;

int q[maxn],f[maxn][maxn],g[maxn][maxn];
int m,n;

int main()
{
	int t;
	cin >> t;
	while (t--) {
		cin >> m >> n;
		int u, v;
		memset(g, 0, sizeof(g));
		for (int i = 0; i < n; i++) {
			cin >> u >> v;
			g[u][v] = g[v][u] = 1;
		}
		cin >> n;
		for (int i = 1; i <= n; i++)
				cin >> q[i];
		for (int i = 2; i <= n; i++)
			for (int j = 1; j <= m; j++)
				f[i][j] = inf;
		for (int j = 1; j <= m; j++)
			f[1][j] = (j != q[1]);				//如果第一个数与修改后的值不同,修改数量加1
		for (int i = 2; i <= n; i++) {
				for(int j=1;j<=m;j++)
					for(int k=1;k<=m;k++)
						if (j == k || g[j][k]) {
							f[i][j] = min(f[i][j], f[i - 1][k] + (j != q[i]));				//如果修改后的值与未修改前的值不同,加修改数量加1,
						}
		}
		int ans = f[n][1];
		for (int j = 1; j <=m; j++) {
			ans = min(ans, f[n][j]);
		}
		printf("%d\n", ans);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值