题目大意
给定一个包含n个点的无向连通图和一个长度为L的序列A,要求修改尽量少的数,使得序列中的任意两个相邻数或者相同,或者对应图中两个相邻节点.
分析
因为给定的节点N《100,所以我们把其纳入动态规划的状态当中去
用一个邻接矩阵g表示两个点之间的联通关系,并且重要的一点,我们把自身与自身连通设为1,即g(i,i)=1;方便我们状态转移;我们设d(i,j)表示前i个数以第j个结尾的最小修改数,这样的话状态转移方程为: d(i,j)=min{d(i-1,k)|g(k,j)连通}
代码如下
#include<iostream>
#include<algorithm>
#include<string.h>
#include<cstdio>
#define maxn 200+10
#define inf 0x3f3f3f3f //设为无穷大;
using namespace std;
int q[maxn],f[maxn][maxn],g[maxn][maxn];
int m,n;
int main()
{
int t;
cin >> t;
while (t--) {
cin >> m >> n;
int u, v;
memset(g, 0, sizeof(g));
for (int i = 0; i < n; i++) {
cin >> u >> v;
g[u][v] = g[v][u] = 1;
}
cin >> n;
for (int i = 1; i <= n; i++)
cin >> q[i];
for (int i = 2; i <= n; i++)
for (int j = 1; j <= m; j++)
f[i][j] = inf;
for (int j = 1; j <= m; j++)
f[1][j] = (j != q[1]); //如果第一个数与修改后的值不同,修改数量加1
for (int i = 2; i <= n; i++) {
for(int j=1;j<=m;j++)
for(int k=1;k<=m;k++)
if (j == k || g[j][k]) {
f[i][j] = min(f[i][j], f[i - 1][k] + (j != q[i])); //如果修改后的值与未修改前的值不同,加修改数量加1,
}
}
int ans = f[n][1];
for (int j = 1; j <=m; j++) {
ans = min(ans, f[n][j]);
}
printf("%d\n", ans);
}
return 0;
}