题目大意:求x^2-x+y^2-y-2*x*y=0在1 <= x <= a且1 <= y <= b的范围内有多少个整数解。 (1 <= a,b <= 10^ 6)。
题目类型:数学方程解 / 解析几何
题目分析:
将原方程化为 (x’-y’)^2-(x’+y’) = 0,记x’,y’为原的x,y。 令x =x’-y’, y=x’+y’. (x+y = 2x', y-x = 2y').
问题变为x^2 = y 有多少整数解, (2<=x+y<=2a, 2<=y-x<=2b)。 于是就类似高中数学学的线性规划了。 求出有几个符合的x值即可。
另外,注意到其实 原方程可以是 (x’-y’)^2-(x’+y’) = 0,也可以是(y’-x’)^2-(x’+y’) = 0。这样影响的只是x, y的取值范围,
所以相当与把a跟b交换,再算一遍答案,最后连个加起来即可。详见代码。
代码: