2、动态递归神经网络对生物信号的识别:从动眼神经积分器到复杂人类运动与 locomotion

动态递归神经网络对生物信号的识别:从动眼神经积分器到复杂人类运动与 locomotion

1. 引言

近年来,人工神经网络在生物领域的应用取得了显著进展,其灵感来源于真实生物结构的功能组织。动眼系统对工程师和神经科学家都具有极大的吸引力,在这方面发挥了重要作用。特别是,自从在脑干中发现神经积分器(能够将眼球速度进行数学积分转换为眼球位置信号)的明确证据以来,众多人工网络得以开发,这有助于更好地理解大脑如何控制运动这一基本问题。这种仿生策略最近使得专门用于控制类人机器人的不同动态递归神经网络(DRNN)得以发展。同时,也有人提出了分层神经启发模块,形成前向动力学模型的级联,其中自上而下和自下而上的影响能够生成行为原语。

2. DRNN 对动眼神经积分器的模拟

对神经积分器模型的兴趣超出了动眼领域,因为维持眼球位置的过程与短期或工作记忆中保存的信息存在类比关系。当神经积分器的神经元在扫视期间持续放电以编码眼球速度信号的时间积分时,这种持续活动可以被解释为眼球在空间中位置的内部记忆。因此,与工作记忆的类比很容易实现。

2.1 基本 DRNN 模型

基本模型是一个动态递归神经网络,由以下方程控制:
[
\frac{dy_i}{dt} T_i = -y_i + F(x_i) + I_i
]
其中 (F(\alpha)) 是挤压函数 (F(\alpha) = (1 + e^{-\alpha})^{-1}),(y_i) 是单元 (i) 的状态或激活水平,(I_t) 是外部输入(或偏置),(x_i) 由下式给出:
[
x_i = \sum_{j} w_{ij} y_j
]

基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样统计,通过模拟系统元件的故障修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值