14、基于混沌退火递归神经网络的改进极值搜索算法及其应用

基于混沌退火递归神经网络的改进极值搜索算法及其应用

1. 引言

极值搜索问题旨在通过一组决策变量来最小化或最大化一个系统。这类问题广泛存在于各种设计和规划场景中,是一类常见的优化问题。许多大规模实时应用,如交通路由和生物反应器系统,都需要实时解决大规模极值搜索问题。

早在20世纪50年代,就有人提出了一种新颖的极值搜索算法。早期关于通过极值搜索来提高性能的研究可以在钱伟长的工作中找到。在20世纪50年代和60年代,极值搜索算法被视为一种自适应控制方法。直到90年代,滑模控制才成功应用于极值搜索。随后,Krstic提出了在极值搜索算法(ESA)中添加补偿器动态的方法,提高了受控极值控制系统的稳定性。

然而,传统ESA存在一些问题,如输出的“抖振”问题、控制律的切换以及无法跳出局部极小值,这些问题限制了ESA的应用。为了解决这些问题并提高全局搜索能力,本文提出了一种改进的混沌退火递归神经网络(CARNN),并将其引入到ESA中。

具体步骤如下:
1. 将极值搜索问题转化为寻找系统全局极值点的过程,在该点成本函数的斜率为零。
2. 构建改进的CARNN。
3. 应用CARNN寻找全局极值点,并将系统稳定在该点。

CARNN不使用正弦周期信号等搜索信号,因此可以解决一般ESA中输出的“抖振”问题和控制律的切换问题,提高极值搜索系统的动态性能。同时,CARNN利用混沌系统的随机性和全局搜索特性,提高了系统的全局搜索能力。在优化过程中,通过不断衰减混沌噪声的幅度和接受概率来实现混沌退火,调整接受概率可以影响收敛速度。优化过程分为两个阶段:基于混沌的粗搜索和基于递归神经网络(RNN)的精细搜索。最后,CARNN将系统稳定到全

基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值