2、哈密顿系统及相关方程探究

哈密顿系统及相关方程探究

1. 受迫非线性振荡器

考虑系统(\ddot{x} + f(x) = g(t)),其中(x)是标量,(f)和(g)是标量变量的光滑实值函数。这个方程在多个领域有实际应用:
- 机械系统 :如弹簧 - 质量系统,(x)是质量为(1)的粒子的位移,粒子连接到具有恢复力(-f(x))的非线性弹簧上,并受到外力(g(t))作用,且假设没有依赖速度的力,如摩擦力。
- 电气系统 :在带有外部电压源的LC电路中,(x)表示串联电路中非线性电容器上的电荷,电路包含线性电感器和外部电动势(g(t)),且假设电路中无电阻。

该方程等价于系统:
(\dot{x} = y = \frac{\partial H}{\partial y})
(\dot{y} = -f(x) + g(t) = -\frac{\partial H}{\partial x})
其中(H = \frac{1}{2}y^2 + F(x) - xg(t)),(F(x) = \int_{0}^{x} f(s)ds) 。

许多著名的方程都具有这种形式,例如:
- 简谐振荡器:(\ddot{x} + \omega^2x = 0)
- 摆方程:(\ddot{\theta} + \sin \theta = 0)
- 受迫杜芬方程:(\ddot{x} + x + \alpha x^3 = \cos \omega t)

当强迫项(g \equiv 0)时,(H)是一个积分,解位于(H)的等值曲线上。通过绘制等值曲线可以轻松得到相图。这些方程在经典意

源码地址: https://pan.quark.cn/s/d1f41682e390 miyoubiAuto 米游社每日米游币自动化Python脚本(务必使用Python3) 8更新:更换cookie的获取地址 注意:禁止在B站、贴吧、或各大论坛大肆传播! 作者已退游,项目不维护了。 如果有能力的可以pr修复。 小引一波 推荐关注几个非常可爱有趣的女孩! 欢迎B站搜索: @嘉然今天吃什么 @向晚大魔王 @乃琳Queen @贝拉kira 第三方库 食用方法 下载源码 在Global.py中设置米游社Cookie 运行myb.py 本地第一次运行时会自动生产一个文件储存cookie,请勿删除 当前仅支持单个账号! 获取Cookie方法 浏览器无痕模式打开 http://user.mihoyo.com/ ,登录账号 按,打开,找到并点击 按刷新页面,按下图复制 Cookie: How to get mys cookie 当触发时,可尝试按关闭,然后再次刷新页面,最后复制 Cookie。 也可以使用另一种方法: 复制代码 浏览器无痕模式打开 http://user.mihoyo.com/ ,登录账号 按,打开,找到并点击 控制台粘贴代码并运行,获得类似的输出信息 部分即为所需复制的 Cookie,点击确定复制 部署方法--腾讯云函数版(推荐! ) 下载项目源码和压缩包 进入项目文件夹打开命令行执行以下命令 xxxxxxx为通过上面方式或取得米游社cookie 一定要用双引号包裹!! 例如: png 复制返回内容(包括括号) 例如: QQ截图20210505031552.png 登录腾讯云函数官网 选择函数服务-新建-自定义创建 函数名称随意-地区随意-运行环境Python3....
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值