哈密顿系统及相关方程探究
1. 受迫非线性振荡器
考虑系统(\ddot{x} + f(x) = g(t)),其中(x)是标量,(f)和(g)是标量变量的光滑实值函数。这个方程在多个领域有实际应用:
- 机械系统 :如弹簧 - 质量系统,(x)是质量为(1)的粒子的位移,粒子连接到具有恢复力(-f(x))的非线性弹簧上,并受到外力(g(t))作用,且假设没有依赖速度的力,如摩擦力。
- 电气系统 :在带有外部电压源的LC电路中,(x)表示串联电路中非线性电容器上的电荷,电路包含线性电感器和外部电动势(g(t)),且假设电路中无电阻。
该方程等价于系统:
(\dot{x} = y = \frac{\partial H}{\partial y})
(\dot{y} = -f(x) + g(t) = -\frac{\partial H}{\partial x})
其中(H = \frac{1}{2}y^2 + F(x) - xg(t)),(F(x) = \int_{0}^{x} f(s)ds) 。
许多著名的方程都具有这种形式,例如:
- 简谐振荡器:(\ddot{x} + \omega^2x = 0)
- 摆方程:(\ddot{\theta} + \sin \theta = 0)
- 受迫杜芬方程:(\ddot{x} + x + \alpha x^3 = \cos \omega t)
当强迫项(g \equiv 0)时,(H)是一个积分,解位于(H)的等值曲线上。通过绘制等值曲线可以轻松得到相图。这些方程在经典意
超级会员免费看
订阅专栏 解锁全文
1127

被折叠的 条评论
为什么被折叠?



