34、哈密顿 - 雅可比理论:从积分到几何光学的深入探究

哈密顿 - 雅可比理论:从积分到几何光学的深入探究

1. 希尔伯特独立积分

在一个由测地等距超曲面族所定义的正则场中,存在一种线积分,它与积分路径无关。这个积分以其发现者希尔伯特命名,不仅在哈密顿 - 雅可比理论中具有重要意义,在变分法的某些方面也发挥着关键作用。

假设存在一个简单覆盖区域 $G$ 的测地等距超曲面族。考虑区域 $G$ 内分别位于超曲面 $S = \sigma_1$ 和 $S = \sigma_2$ 上的任意两点 $P_1$ 和 $P_2$,以及一条连接这两点且位于 $G$ 内的任意 $C^1$ 曲线 $C: q_i = q_i(t)$。曲线 $C$ 的切向量 $(dq_i/dt, 1)$ 的分量记为 $(q_i’, 1)$。沿着曲线 $C$ 对 $dS$ 进行积分,这个积分显然与路径无关:
[J := \int_{P_1}^{P_2} dS(q_i, t) = \sigma_2 - \sigma_1 = \int_{P_1}^{P_2} \left(\frac{\partial S}{\partial q_i}q_i’ + \frac{\partial S}{\partial t}\right) dt]

通过应用 $p_i = \partial S / \partial q_i$ 和哈密顿 - 雅可比方程,可得到一个与路径无关的积分:
[J = \int_{P_1}^{P_2} \left(p_iq_i’ - H(q_i, p_i, t)\right) dt = \sigma_2 - \sigma_1]

再通过勒让德变换消除 $p_i$,引入 $\dot{q} i$,得到:
[J = \int

这个是完整源码 python实现 Flask,Vue 【python毕业设计】基于Python的Flask+Vue物业管理系统 源码+论文+sql脚本 完整版 数据库是mysql 本文首先实现了基于Python的Flask+Vue物业管理系统技术的发展随后依照传统的软件开发流程,最先为系统挑选适用的言语和软件开发平台,依据需求分析开展控制模块制做和数据库查询构造设计,随后依据系统整体功能模块的设计,制作系统的功能模块图、E-R图。随后,设计框架,依据设计的框架撰写编码,完成系统的每个功能模块。最终,对基本系统开展了检测,包含软件性能测试、单元测试和性能指标。测试结果表明,该系统能够实现所需的功能,运行状况尚可并无明显缺点。本文首先实现了基于Python的Flask+Vue物业管理系统技术的发展随后依照传统的软件开发流程,最先为系统挑选适用的言语和软件开发平台,依据需求分析开展控制模块制做和数据库查询构造设计,随后依据系统整体功能模块的设计,制作系统的功能模块图、E-R图。随后,设计框架,依据设计的框架撰写编码,完成系统的每个功能模块。最终,对基本系统开展了检测,包含软件性能测试、单元测试和性能指标。测试结果表明,该系统能够实现所需的功能,运行状况尚可并无明显缺点。本文首先实现了基于Python的Flask+Vue物业管理系统技术的发展随后依照传统的软件开发流程,最先为系统挑选适用的言语和软件开发平台,依据需求分析开展控制模块制做和数据库查询构造设计,随后依据系统整体功能模块的设计,制作系统的功能模块图、E-R图。随后,设计框架,依据设计的框架撰写编码,完成系统的每个功能模块。最终,对基本系统开展了检测,包含软件性能测试、单元测试和性能指标。测试结果表明,该系统能够实现所需的功能,运行状况尚可并无明显缺点。本文首先实现了基于Python的Flask+Vue物业管理系统技术的发
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值