R语言缺失数据变量选择LASSO回归:Bootstrap重(再)抽样插补和推算

全文链接:http://tecdat.cn/?p=30726

在存在缺失数据的情况下,需要根据缺失数据的机制和用于处理缺失数据的统计方法定制变量选择方法。我们专注于可以与插补相结合的随机和变量选择方法的缺失方法点击文末“阅读原文”获取完整代码数据)。

我们围绕自举Bootstrap插补和稳定性选择技术进行一些咨询,帮助客户解决独特的业务问题,后者是为完全观察的数据而开发的。所提出的方法是通用的,可以应用于广泛的设置。仿真研究表明,与几种针对低维和高维问题的现有方法相比,BI-SS的性能是最好的或接近最好的,并且对变量选择方面的参数值调整相对不敏感。

引言

变量选择已经广泛研究了完全观察到的数据,现有方法包括基于AIC的经典方法(Akaike,1974)和现代正则化方法,如套索(Tibshirani,1996)。与完全观测的数据相比,在存在缺失数据的情况下,变量选择出现了新的挑战。特别是,存在不同的缺失数据机制,对于每种机制,都有不同的统计方法来处理缺失数据。因此,变量选择方法需要根据缺失的数据机制和所使用的统计方法进行调整。Little和Rubin(2002)和Tsiatis(2006)一起对处理缺失数据的现有统计方法进行了全面回顾。

相关视频

本文重点研究了随机缺失(MAR)。根据MAR研究了变量选择,并对用于处理缺失数据的统计方法进行了研究。

### 具有非正态变量的示例数据集
set.seed(1000)
n <- 50
x1 <- round(runif(n,0.5,3.5))
x2 <- as.factor(c(rep(1,10),rep(2,25),rep(3,15)))

Bootstrap插补

随机创建缺失值

dat <- mice(data1)
complete(dat)

稳定性选择与自举插补相结合

train <- data[trainindex,1:6]
calibrate <- data[-trainindex,1:6]
plot(train)

Bootstrap插补

套索LASSO回归

lambda的最优值是通过交叉验证选择的。

8124e49c254d2f818b293107f7ac354a.png


点击标题查阅往期内容

e732bffffe9ae4cddb3f95ef8ca1837a.png

PYTHON链家租房数据分析:岭回归、LASSO、随机森林、XGBOOST、KERAS神经网络、KMEANS聚类、地理可视化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值