全文链接:http://tecdat.cn/?p=21825
假设检验的基本原理是小概率原理,即我们认为小概率事件在一次试验中实际上不可能发生。
相关视频
多重比较的问题
当同一研究问题下进行多次假设检验时,不再符合小概率原理所说的“一次试验”。如果在该研究问题下只要有检验是阳性的,就对该问题下阳性结论的话,对该问题的检验的犯一类错误的概率就会增大。如果同一问题下进行n次检验,每次的检验水准为α(每次假阳性概率为α),则n次检验至少出现一次假阳性的概率会比α大。假设每次检验独立的条件下该概率可增加至
常见的多重比较情景包括:
多组间比较
多个主要指标
临床试验中期中分析
亚组分析
控制多重比较谬误(Familywise error rate):Bonferroni矫正
Bonferroni法得到的矫正P值=P×n
Bonferroni法非常简单,它的缺点在于非常保守(大概是各种方法中最保守的了),尤其当n很大时,经过Bonferroni法矫正后总的一类错误可能会远远小于既定α。
控制错误发现率:Benjamini & Hochberg法
简称BH法。首先将各P值从小到大排序,生成顺序数排第k的矫正P值=P×n/k
另外要保证矫正后的各检验的P值大小顺序不发生变化。
怎么做检验
R内置了一些方法来调整一系列p值,以控制多重比较谬误(Familywise error rate)或控制错误发现率。
Holm、Hochberg、Hommel和Bonferroni方法控制了多重比较谬误(Familywise error rate)。这些方法试图限制错误发现的概率(I型错误,在没有实际效果时错误地拒绝无效假设),因此都是相对较保守的。
方法BH(Benjamini-Hochberg,与R中的FDR相同)和BY(Benjamini & Yekutieli)控制错误发现率,这些方法试图控制错误发现的期望比例。
请注意,这些方法只需要调整p值和要比较的p值的数量。这与Tukey或Dunnett等方法不同,Tukey和Dunnett也需要基础数据的变异性。Tukey和Dunnett被认为是多重比较谬误(Familywise error rate)方法。
要了解这些不同调整的保守程度,请参阅本文下面的两个图。
关于使用哪种p值调整度量没有明确的建议。一般来说,你应该选择一种