阈值向量误差修正模型TVECM对汇率金融时间序列数据分析|附数据代码

全文链接:https://tecdat.cn/?p=36380

在全球金融市场中,汇率作为连接不同国家货币价值的桥梁,其动态变化对全球经济活动、贸易和投资具有深远影响。随着金融市场的日益复杂化和全球化,汇率时间序列数据展现出高度的非线性、非对称性和动态性特征,使得传统的线性模型在分析时面临挑战。因此,探索适用于分析汇率金融时间序列数据的非线性模型,对于深入理解汇率波动机制、指导金融投资决策具有重要意义点击文末“阅读原文”获取完整代码数据)。

阈值向量误差修正模型(Threshold Vector Error Correction Model, TVECM)作为一种非线性计量经济学模型,近年来在汇率数据分析领域受到了广泛关注。该模型通过引入阈值机制,能够捕捉汇率时间序列数据在不同状态下的非线性动态特征,从而更准确地刻画汇率波动的复杂性和多样性。与传统的向量误差修正模型(VECM)相比,TVECM模型不仅能够分析变量之间的长期均衡关系,还能进一步探讨变量在短期内对均衡偏离的调整过程,特别是在不同阈值状态下的调整差异。

本文旨在应用R语言TVECM模型帮助客户对汇率金融时间序列数据进行深入分析。首先,我们将对TVECM模型的理论基础、模型设定和估计方法进行系统介绍,为读者提供全面的模型背景知识。其次,我们将选择具有代表性的汇率数据作为研究样本,运用TVECM模型进行实证分析,探讨汇率在不同阈值状态下的动态特征和调整机制。最后,我们将对实证结果进行解释和讨论,为汇率预测、风险管理和政策制定提供有价值的参考。

读取数据

首先,我们从CSV文件中读取所需的数据集。这个数据集包含了与汇率和其他金融指标相关的历史数据。我们使用read.csv函数读取名为"data.csv"的文件,并使用na.omit函数去除任何包含缺失值(NA)的观测值。最后,我们利用head函数预览数据集的前几行,以确保数据已被正确加载和清洗。

ee2f88b044e42382d812ad92ce816259.png

在R环境中,我们执行以下代码准备数据集:

# 读取数据  

	data <- read.csv("data.csv")  

	  

	# 去除缺失值  

	data <- na.omit(data)  

	  

	# 预览数据集的前几行  

	head(data)

执行上述代码后,我们得到以下数据集的前几行输出:

55d648b48c388c42cafa039c420f9123.png

从上述输出中,我们可以看到数据集包含了日期(date)、人民币在岸汇率(CNY)、人民币离岸汇率(CNH)、利率(r)、波动性指数(VIX)、某种收益率(p)和远期汇率(ndf)等变量。这些变量将为后续的数据动态分析提供基础。

阈值向量误差修正模型

在本文中,我们将对金融时间序列数据进行深入分析,特别是关注于零利率数据(zeroyld)。为了捕捉数据中的非线性动态和潜在的结构性变化,我们将使用阈值向量误差修正模型(Threshold Vector Error Correction Model, TVECM)对数据进行分析。TVECM模型能够有效地处理具有不同动态特性的数据子集,从而提供更准确的预测和解释。

方法

我们使用R语言来估计TVECM模型。在设定模型参数时,我们选择了两个阈值(nthresh=2)、一阶滞后(lag=1)、以及β和θ的网格大小分别为60和30。此外,我们还设置了plot=TRUE以便在估计过程中生成图形,并使用trim=0.05来排除观测值百分比低于5%的网格点。我们还为β的截距项设定了一个范围,以限制其取值范围。

849acb120cea6b97838627298eee94ff.png

在执行TVECM模型估计后,我们观察到网格中有大量点(占93.4%)的观测值百分比低于我们设定的修剪阈值(trim),因此这些点没有被计算。这表明我们的网格设置相对较为宽松,但这也为我们提供了一个广泛的搜索空间以寻找最佳模型参数。

在模型估计过程中,我们得到了多个重要的统计量。首先,最佳阈值从第一次搜索中得出为-0.0464,这表明当某个指标超过这个阈值时,数据的动态特性可能会发生变化。其次,我们得到了最佳协整值(cointegrating value)为0.9915254,这为我们提供了关于变量之间长期均衡关系的信息。

此外,我们还注意到在条件步骤和迭代步骤中,存在多个阈值值使得残差平方和(SSR)最小化。在这种情况下,我们选择了第一个找到的阈值作为最佳阈值。同时,我们还记录了第二好的阈值组合以及对应的SSR值,以便后续分析和比较。

cfd6f488c76331d0fdd228d41cb86c75.png

bb4518188a382cf7dcb9bf7e2ababdea.png

阈值向量误差修正模型(TVECM)的参数估计结果

在本文中,我们采用了阈值向量误差修正模型(TVECM)来分析两组时间序列数据——CNY和CNH。该模型通过引入阈值来捕捉数据中的非线性动态特性,并允许在数据状态变化时模型的参数发生变化。以下是基于我们分析的数据集所得到的TVECM模型参数估计结果。

最佳阈值与协整值
在首次搜索中,我们找到了最佳的阈值组合为-0.0464。此外,模型估计出的最佳协整值为0.9915254,这为我们提供了关于CNY和CNH之间长期均衡关系的量化信息。

条件步骤与迭代步骤中的阈值选择
在条件步骤中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值