力扣1137题:第N个泰波那契数题解

小学生一枚,自学信奥中,没参加培训机构,所以命名不规范、代码不优美是在所难免的,欢迎指正
代码是自己写的,文字是AI配的

题目概述

泰波那契数列 T(n) 定义如下:

  • T(0) = 0
  • T(1) = 1
  • T(2) = 1
  • 对于 n >= 3,T(n) = T(n-1) + T(n-2) + T(n-3)

给定整数 n,要求返回 T(n) 的值。

动态规划解法

动态规划是解决此类递推问题的有效方法。通过存储中间结果避免重复计算,时间复杂度为 O(n),空间复杂度为 O(n)(可优化为 O(1))。

class Solution {
public:
    int tribonacci(int n) {
        // 初始化动态规划数组,题目约束n<=37
        int dp[38];
        
        // 基础情况
        dp[0] = 0;
        dp[1] = 1;
        dp[2] = 1;
        
        // 递推计算每个位置的值
        for(int i = 3; i <= n; i++) {
            dp[i] = dp[i-1] + dp[i-2] + dp[i-3];
        }
        
        // 返回结果
        return dp[n];
    }
};
代码注释说明
  1. 数组初始化:创建大小为38的数组(根据题目约束n≤37)
  2. 基础条件:直接赋值T(0)、T(1)、T(2)
  3. 递推计算:从T(3)开始,每个位置等于前三个位置的和
  4. 结果返回:直接返回dp[n]作为解
空间优化方案

可以使用滚动变量将空间复杂度降为O(1):

class Solution {
public:
    int tribonacci(int n) {
        if(n == 0) return 0;
        if(n < 3) return 1;
        
        int a = 0, b = 1, c = 1, d;
        for(int i = 3; i <= n; i++) {
            d = a + b + c;
            a = b;
            b = c;
            c = d;
        }
        return c;
    }
};
复杂度分析
  • 原始解法:
    • 时间复杂度:O(n)
    • 空间复杂度:O(n)
  • 优化解法:
    • 时间复杂度:O(n)
    • 空间复杂度:O(1)
边界情况处理

特别注意n=0和n=1/n=2时的直接返回情况,这是动态规划初始化的关键。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值