小学生一枚,自学信奥中,没参加培训机构,所以命名不规范、代码不优美是在所难免的,欢迎指正
代码是自己写的,文字是AI配的
题目概述
泰波那契数列 T(n) 定义如下:
- T(0) = 0
- T(1) = 1
- T(2) = 1
- 对于 n >= 3,T(n) = T(n-1) + T(n-2) + T(n-3)
给定整数 n,要求返回 T(n) 的值。
动态规划解法
动态规划是解决此类递推问题的有效方法。通过存储中间结果避免重复计算,时间复杂度为 O(n),空间复杂度为 O(n)(可优化为 O(1))。
class Solution {
public:
int tribonacci(int n) {
// 初始化动态规划数组,题目约束n<=37
int dp[38];
// 基础情况
dp[0] = 0;
dp[1] = 1;
dp[2] = 1;
// 递推计算每个位置的值
for(int i = 3; i <= n; i++) {
dp[i] = dp[i-1] + dp[i-2] + dp[i-3];
}
// 返回结果
return dp[n];
}
};
代码注释说明
- 数组初始化:创建大小为38的数组(根据题目约束n≤37)
- 基础条件:直接赋值T(0)、T(1)、T(2)
- 递推计算:从T(3)开始,每个位置等于前三个位置的和
- 结果返回:直接返回dp[n]作为解
空间优化方案
可以使用滚动变量将空间复杂度降为O(1):
class Solution {
public:
int tribonacci(int n) {
if(n == 0) return 0;
if(n < 3) return 1;
int a = 0, b = 1, c = 1, d;
for(int i = 3; i <= n; i++) {
d = a + b + c;
a = b;
b = c;
c = d;
}
return c;
}
};
复杂度分析
- 原始解法:
- 时间复杂度:O(n)
- 空间复杂度:O(n)
- 优化解法:
- 时间复杂度:O(n)
- 空间复杂度:O(1)
边界情况处理
特别注意n=0和n=1/n=2时的直接返回情况,这是动态规划初始化的关键。