细胞自动机与Chop操作的描述复杂性研究
细胞自动机中的自组织现象
细胞自动机是一种离散的动态系统,在许多领域都有广泛的应用。下面我们将介绍几种不同类型的细胞自动机,并分析它们的自组织特性。
n - 状态循环自动机
n - 状态循环自动机是一种特殊的俘获细胞自动机,定义在字母表 $A = Z/nZ$ 上,其局部规则如下:
[
f(a_{i - 1}, a_i, a_{i + 1}) =
\begin{cases}
a_i + 1 & \text{如果 } a_{i - 1} = a_i + 1 \text{ 或 } a_{i + 1} = a_i + 1 \
a_i & \text{否则}
\end{cases}
]
研究表明,对于所有的伯努利测度 $\mu$,集合 $[i]_0$($i \in A$)是 $\mu$ - 吸引子当且仅当 $n \geq 5$。从随机配置开始的模拟显示:
- 当 $n = 3$ 或 $4$ 时,单色区域的大小会不断增加。
- 当 $n \geq 5$ 时,系统会收敛到一个固定点,其中小区域由垂直线分隔。
我们对其进行如下分析:
1. 分解与速度函数定义 :考虑分解 $\Sigma = \bigcup_{i \in A} \Sigma_i$,其中 $\Sigma_i = {\infty i \infty}$,周期 $P_i = 1$(无位错)。定义速度函数 $V$ 如下:
- $V(i + 1, i) = (1, 1)$
- $V(i, i +
订阅专栏 解锁全文
2万+

被折叠的 条评论
为什么被折叠?



