基于Matlab GUI的树叶识别系统设计与实现

219 篇文章 ¥119.90 ¥299.90
本文介绍了一个基于Matlab GUI的树叶识别系统,利用AlexNet模型进行数据预处理、特征提取和分类识别,实现了高准确率的树叶分类,并在Flavia数据集上达到了90.3%的识别准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于Matlab GUI的树叶识别系统设计与实现

在现代生态环境保护与可持续发展的背景下,植物识别技术逐渐成为人们关注的热点话题之一。其中,树叶识别作为植物识别中的一个重要分支,具有广阔的应用前景。为了提高树叶识别的准确率和效率,本文设计并实现了一个基于Matlab GUI的树叶识别系统,采用AlexNet神经网络模型对树叶进行分类识别。

一、系统框架

该系统主要由以下几个部分组成:

  1. 数据预处理:将原始图像转化为标准尺寸,并对像素值进行归一化处理。

  2. 特征提取:利用AlexNet模型提取树叶图像的特征向量。

  3. 分类识别:根据特征向量对树叶进行分类识别。

  4. 图像显示:将原始图像以及识别结果展示在GUI界面上。

二、系统实现

  1. 数据集准备

本文采用公开数据集Flavia进行测试,该数据集包含32种不同的树叶类别,每种类别包含190张图像。首先需要将数据集按照7:3的比例划分为训练集和测试集,其中7成数据用于训练模型,3成数据用于测试模型。

  1. 数据预处理

对于每张原始树叶图像,需要将其进行裁剪、缩放和归一化处理,得到标准尺寸的图像并将像素值进行归一化。具体实现代码如下:

<
基于深度学习(6种算法)和传统机器学习分别实现Flavia叶片数据集识别分类python源码(含详细使用说明+注释) 【项目介绍】 深度学习算法包含6种:分别是Alexnet、GoogLeNet、HRnet、Resnet18、Selfnet、VGG11,可对比 1. Leaf_data_acquisition.py ## 1.1 介绍说明 提取叶片特征,并保存为csv文件,为后续使用机器学习算法进行分类做准备。 ## 1.2 图像预处理 1. histogram(image)函数的作用是获取输入图片R、G、B三通道的像素值分布情况。 2. binarization(imgray)函数的作用是分别使用2x2、3x3、5x5的卷积核对输入的灰度图进行平均滤波和二值化处理。 3. margin_detection(imgbi)函数的作用是使用拉普拉斯算子提取图像边缘特征。 ## 1.3 特征提取 1. feature5_extraction(imgray, thresh_5x5, thresh_3x3, thresh_2x2)函数的作用是提取5种几何特征,即最小外接圆直径、最小外接矩形的宽度和高度、不同卷积核平均滤波后的叶片面积(2x2、3x3、5x5)、3x3卷积核平均滤波后的叶片周长。 2. feature12_extraction(thresh, feature)函数的作用是根据上面提取到的5种几何特征,获取12种数字形态特征,即平滑因子、纵横比、形状因子、矩形程度、狭窄因子、直径周长比、周长长宽比、5种静脉特征。 ## 1.4 数据降维 data_PCA(img_data)函数的作用是将12种数字形态特征降维到5维。 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载,沟通交流,互相学习,共同进步! # 2. Leaf_classification_ML.py ## 2.1 介绍说明 根据叶片特征,使用不同的机器学习算法对叶片进行分类。 ## 2.2 数据预处理 1. encode(train, test)函数的作用是对训练集和测试集中的数据进行编码,以及其他预处理操作。 2. deta_acquisition()函数的作用是对训练集按4:1的比例划分为训练集和测试集(验证集)。 ## 2.3 叶片分类 ML_classifier(X_train, X_test, y_train, y_test)函数的作用是使用不同的机器学习算法对叶片进行分类,并显示分类准确率和损失函数,其中列表**classifiers**中包含了所使用的机器学习算法。 ## 2.4 实验结果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

techDM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值