计算机视觉的领域正从统计方法转变为深度学习神经网络方法。在计算机视觉中仍然需要解决许多具有挑战性的问题。 尽管如此,深度学习方法仍在某些特定问题上取得了最新的成果。有趣的不仅仅是深度学习模型在基准问题上的表现。 事实是,单个模型可以从图像中学习含义并执行视觉任务,从而不需要专门的手工方法。
在本文中,你将发现九个有趣的计算机视觉任务,其中深度学习方法正在取得进展。注意,在图像分类(识别)任务时,采用了ILSVRC的命名约定。 尽管这些任务集中在图像上,但是它们可以推广到视频帧。
我试图将重点放在你可能感兴趣的最终用户问题的类型上,而不是在深度学习方面做得很好的更多学术子问题上。
每个示例都提供了对该问题的描述以及一个示例。是否有未列出的最喜欢的用于深度学习的计算机视觉应用程序?
1、图像分类
图像分类涉及为整个图像或照片分配标签。这个问题也被称为“对象分类”,并且可能更普遍地被称为“图像识别”,尽管后者的任务可能适用于与图像内容分类有关的更广泛的任务集。