计算机视觉中的深度学习9大常见应用!

本文探讨了深度学习在计算机视觉领域的9个关键应用,包括图像分类、具有本地化的图像分类、物体检测、对象分割、样式转移、图像着色、图像重建、图像超分辨率和图像合成。深度学习模型在这些问题上取得显著进展,从图像识别到图像修复,展示了其在视觉任务中的强大能力。
摘要由CSDN通过智能技术生成

计算机视觉的领域正从统计方法转变为深度学习神经网络方法。在计算机视觉中仍然需要解决许多具有挑战性的问题。 尽管如此,深度学习方法仍在某些特定问题上取得了最新的成果。有趣的不仅仅是深度学习模型在基准问题上的表现。 事实是,单个模型可以从图像中学习含义并执行视觉任务,从而不需要专门的手工方法。

 

计算机视觉9大常见应用,深度学习的这些名词你听过几个?

 

在本文中,你将发现九个有趣的计算机视觉任务,其中深度学习方法正在取得进展。注意,在图像分类(识别)任务时,采用了ILSVRC的命名约定。 尽管这些任务集中在图像上,但是它们可以推广到视频帧。

我试图将重点放在你可能感兴趣的最终用户问题的类型上,而不是在深度学习方面做得很好的更多学术子问题上。

每个示例都提供了对该问题的描述以及一个示例。是否有未列出的最喜欢的用于深度学习的计算机视觉应用程序?

1、图像分类

图像分类涉及为整个图像或照片分配标签。这个问题也被称为“对象分类”,并且可能更普遍地被称为“图像识别”,尽管后者的任务可能适用于与图像内容分类有关的更广泛的任务集。

 

计算机视觉9大常见应用,深度学习的这些名词你听过几个?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值