PaddleDetection算法分析(12)

本文分析了PaddleDetection中的CascadeCA RCNN模型,该模型在Open Images 2019 Object Detection比赛中表现出色。文章详细介绍了模型原理,特别是级联检测机制,以解决不同IOU阈值带来的问题。实验部分展示了模型在mmdetection框架下的应用,尽管效果不敌faster_rcnn的预训练模型。
摘要由CSDN通过智能技术生成

2021SC@SDUSC

接下来分析PaddleDetection的竞赛冠军模型

CascadeCA RCNN是百度视觉技术部在Google AI Open Images 2019-Object Detction比赛中的最佳单模型,该单模型助力团队在500多参数队伍中取得第二名。Open Images Dataset V5(OIDV5)包含500个类别、173W训练图像和超过1400W个标注边框,是目前已知规模最大的目标检测公开数据集,数据集地址:Open Images V6。团队在比赛中的技术方案报告地址:https://arxiv.org/pdf/1911.07171.pdf

1、模型原理

在two-stage模型中,常见都会预测得到一些目标对象的候选框,这个候选框跟真实值之间一般通过交叉面积(IOU)的计算来判断该框是否为正样本,要保留的候选框。常见的IOU参数设置一般是0.5,但是这种0.5参数的设置一般会导致很多无效的对象,如下的左图所示,而当这个参数设置为0.7的时候就会得到如右图更加清晰的。

但是设置0.7的时候又会带来什么问题呢,不可避免会漏掉一些目标框,特别是微小目标,同时由于正样本数量太少,容易出现过按拟合的现象。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值