基于感知器算法的手写数字识别matlab实现

基于感知器算法的手写数字识别

% --------------------------------------------------------------------
% 感知器算法
% --------------------------------------------------------------------
load('template.mat');
img=imread('untitled.bmp');  %读入测试图像
feature=Getfeature(img);   %提取测试样本特征
w = zeros(10,26);   %10个类别的增广权值
d = zeros(1,10);    %迭代过程中判别函数计算结果
x = zeros(1,26);    %增广样本,前25维为样本特征,第26维为1
hx = zeros(1,10);   %测试样本判别函数计算结果
c = 0;  %迭代次数
flag=0;%标志符(只使用01)


%%%%%%%%%% Begin %%%%%%%%%%
%   用全部训练样本迭代训练(使用梯度下降法,迭代结束求出10个类别的权矢量存入w(10,26))
while ~flag
    flag = 1;
    for n = 1:10
        for i = 1:pattern(n).num
            %依次读取训练样本
            x = pattern(n).feature(i,:);
            x(26) = 1;
            for j = 1:10
            %%%%%%%%%% Begin %%%%%%%%%%
            %计算判别函数值d(j)
                d(j)=w(j,:)*x';

            %%%%%%%%%% End %%%%%%%%%%
            end
            %判断d(n)是否是最大值
            if d(n)~=max(d)||max(d)==min(d)       
            %%%%%%%%%% Begin %%%%%%%%%%
            %d(n)不是最大值,修正权矢量w
            for k=1:10
                if k==n
                w(k,:)=w(k,:)+x;
            else
                w(k,:)=w(k,:)-x;
            end
            end
            %%%%%%%%%% End %%%%%%%%%%
                flag=0; %将标志符置为0
            end
        end
    end
    c = c+1;
    if(c>500)  %迭代超过500次停止
       break
    end
end
%%%%%%%%%% End %%%%%%%%%%


%   测试样品
num = feature;
num(26) = 1;

%   计算判别函数
for n = 1:10
    hx(n) = w(n,:)*num';

end

[tem,num] = max(hx);    %找到其中的最大值
num = num-1;

str = num2str(num);
str = ['应用感知器算法识别结果:' str];
fprintf('%s\n',str);

以下是使用感知器进行手写数字识别MATLAB 代码: 1. 导入数据集 首先,需要导入 MINIST 数据集。这个数据集包含了很多手写数字的图像和对应的标签。可以通过以下代码导入: ```matlab load('mnist.mat'); % 导入 MINIST 数据集 ``` 2. 数据预处理 由于感知器只能接受一维向量作为输入,因此需要将每个手写数字图像转换为一维向量。同时,还需要将图像的像素值从 0-255 转换为 -1 到 1 之间的实数。可以通过以下代码实现: ```matlab % 将图像转换为一维向量 train_data = reshape(train_images, [], 784); test_data = reshape(test_images, [], 784); % 将像素值归一化到 -1 到 1 之间 train_data = double(train_data) / 127.5 - 1; test_data = double(test_data) / 127.5 - 1; ``` 另外,需要将标签转换为独热编码,以便在训练过程中使用。可以通过以下代码实现: ```matlab train_labels = zeros(60000, 10); test_labels = zeros(10000, 10); for i = 1:60000 train_labels(i, train_labels_raw(i) + 1) = 1; end for i = 1:10000 test_labels(i, test_labels_raw(i) + 1) = 1; end ``` 3. 定义感知器模型 感知器模型包括输入层、隐藏层和输出层。在这个例子中,输入层有 784 个神经元,隐藏层有 32 个神经元,输出层有 10 个神经元(分别对应 0-9 十个数字)。可以通过以下代码定义模型: ```matlab input_size = 784; % 输入层大小 hidden_size = 32; % 隐藏层大小 output_size = 10; % 输出层大小 % 初始化权重和偏置 W1 = randn(input_size, hidden_size) / sqrt(input_size); b1 = zeros(1, hidden_size); W2 = randn(hidden_size, output_size) / sqrt(hidden_size); b2 = zeros(1, output_size); % 定义前向传播函数 forward = @(x) softmax(x * W2 + b2); ``` 其中,softmax 函数用于将输出层的输出转换为概率分布。 4. 训练模型 可以使用随机梯度下降算法训练感知器模型。每次迭代时,从训练集中随机选择一个样本,计算前向传播和反向传播,然后更新权重和偏置。可以通过以下代码实现: ```matlab learning_rate = 0.1; % 学习率 batch_size = 32; % 批量大小 num_epochs = 10; % 迭代次数 num_batches = ceil(size(train_data, 1) / batch_size); for epoch = 1:num_epochs for batch = 1:num_batches % 选择一个随机批量 idx = randperm(size(train_data, 1), batch_size); x = train_data(idx, :); y = train_labels(idx, :); % 前向传播 hidden = tanh(x * W1 + b1); output = forward(hidden); % 反向传播 error = output - y; dW2 = hidden' * error; db2 = sum(error, 1); dhidden = (1 - hidden.^2) .* (error * W2'); dW1 = x' * dhidden; db1 = sum(dhidden, 1); % 更新权重和偏置 W2 = W2 - learning_rate * dW2; b2 = b2 - learning_rate * db2; W1 = W1 - learning_rate * dW1; b1 = b1 - learning_rate * db1; end % 在测试集上评估模型表现 hidden = tanh(test_data * W1 + b1); output = forward(hidden); [~, pred] = max(output, [], 2); accuracy = mean(pred == test_labels_raw); fprintf('Epoch %d, Accuracy: %f\n', epoch, accuracy); end ``` 5. 使用模型进行预测 训练完成后,可以使用模型进行预测。可以通过以下代码实现: ```matlab hidden = tanh(test_data * W1 + b1); output = forward(hidden); [~, pred] = max(output, [], 2); ``` 其中,`pred` 变量包含了模型在测试集上的预测结果。可以将其与真实标签进行比较,计算模型的准确率。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

happylife_mini

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值