感知器学习算法

19 篇文章 1 订阅
6 篇文章 1 订阅
这篇博客介绍了带偏置的感知器网络的工作原理和算法流程,通过一个逻辑OR门的例子展示了如何初始化权重并进行训练。文章中提供了MATLAB和Python的代码实现,演示了权重更新和神经元状态计算的过程,强调了训练数据量和输入参数对模型准确性的影响。
摘要由CSDN通过智能技术生成

带偏置的感知器网络如下:
在这里插入图片描述

算法流程

初始化

随机生成权重,正负均可

训练

执行T次循环
 其中对于每一个输入向量:
  用激活函数g计算每一个神经元j的激活状态
在这里插入图片描述
其中yj是神经元j的激活状态(0或1),g是激活函数,wij是i输入与j神经元连接的权重,xi是i输入的值。
  更新权重
在这里插入图片描述
η是学习速率,是权重变更快慢的一个度量,一般取0.1-0.4之间,yj即当下训练的神经元状态(0或1),tj是训练集中对应的正确结果(0或1),xi是i输入。如果训练的yj与tj相同,则这个权重是正确的,就不需要更改。

再现

同样使用激活函数计算神经元的状态,不同的是,这时权重的列表已经不变,是使用训练好的权重表。
在这里插入图片描述

感知器示例

实现逻辑OR
这是用于理解感知器工作的一个例子

输入1输入2输出
000
011
101
111

在这里插入图片描述
可以看到,这里需要三个权重ω1ω2ω3
假设取ω1=-0.05,ω2=-0.02,ω3=0.02,依照结果,输如为00时,输出应为0。
带入计算公式。y=0.05>0不是正确结果,需要进行权重的更新。则:
ω1:-0.05-0.25*(1-0)-1=0.2
ω2:-0.02-0.25
(1-0)0=-0.02
ω3: 0.02-0.25
(1-0)*0=0.02
这样就得到了新的权重ω1=0.2,ω2=-0.02,ω3=0.02,继续训练来寻求一个稳定的权重。(这里由于题目简单,所以无法体现出训练与再现,但可以想象一下输入输出的数目变多的情形,这会变得有效)

代码实现

matlab
clear;
clc;
n=200;
r=100;
%生成训练集与测试集,这里将前n-10组数据作为训练集,后10组作为测试集
imput=round(rand(n,r));
t=sum(imput,2);
for i=1:n
    if t(i)>=r-4
        t(i)=1;
    else
        t(i)=0;
    end
end
ans=zeros(1,n);
%sensor
%输入向量为r维,即r个输入
%train
eta=0.3;
y_train=zeros(1,n-10);
    %生成权重列表
w=-1+rand(1,r);
    %计算神经元状态
for i=1:n-10
    y_train(i)=sum(imput(i,:).*w,2);
    if y_train(i)>0
        ans(i)=1;
    else
        ans(i)=0;
    end
    for j=1:r%更新权重
        w(1,j)=w(1,j)-eta*(ans(i)-t(i))*imput(i,j);
    end
end
%测试
count=0;
for i=n-9:n
    y_train(i)=sum(imput(i,:).*w,2);
    if y_train(i)>0
        ans(i)=1;
    else
        ans(i)=0;
    end
    if ans(i)==t(i)
        count=count+1;
    end
end
answer=count/10%输出测试正确的概率

注意这里面的n与r设计的都很大,你可以尝试把值调小,当足够小的时候,这种训练效果是很不好的,测试正确率甚至可以为0,当有足够多的训练数据与输入参数时,输出的正确率才得以保证
为什么我没说在少的输入参数域足够多的训练数据这种情况呢?因为参数较少的情况下,大量的数据不就是穷举法了吗?

python

使用到的语句:
使用了numpy

语句及语法手册链接作用
random.randint生成随机数组
ifif判断
forfor循环
sum 见下文求和
random随机
np.empty空矩阵
sum函数作用
A.sum()是计算矩阵A的每一个元素之和。
A.sum(axis=0)是计算矩阵每一列元素相加之和。
A.Sum(axis=1)是计算矩阵的每一行元素相加之和。
# coding=utf-8
import numpy as np
from numpy import random
#设置数据组的维度
data_group=100
import_num=200
#生成训练集与测试集,这里将前n-10组数据作为训练集,后10组作为测试集
imp_data=random.randint(2, size=(data_group,import_num))
t=imp_data.sum(axis=1)
y_train=np.empty((data_group,1))
ans=np.empty((data_group,1))
for i in range(0,data_group,1):
    if t[i]>=import_num-4:
        t[i]=1
    else:
        t[i]=0
eta=0.3
#产生随机权重
w=2*random.rand(import_num)-1
#训练
for i in range(0,data_group-10,1):
    y_train=(np.dot(w,imp_data[i]))
    if y_train > 0 :
        ans[i]=1
    else:
        ans[i]=0
    for j in range(0,import_num,1):
        w[j] = w[j] - eta * (ans[i] - t[i]) * imp_data[i, j]
#测试
count=0
for i in range(data_group-10,data_group,1):
    y_train=(np.dot(w,imp_data[i]))
    if y_train > 0 :
        ans[i]=1
    else:
        ans[i]=0
    if ans[i]==t[i]:
        count=count+1
#输出正确率
print(count/10)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值