leetcode 63. Unique Paths II

原题:
Follow up for “Unique Paths”:

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
大意:
给你一个二维向量,标有数字1表示该地区不可到达,现在问你从(0,0)走到右下角有多少种走法。

class Solution
{
    int dp[105][105];
public:
    int uniquePathsWithObstacles(vector<vector<int>>& ob)
    {
        memset(dp,0,sizeof(dp));
        int m=ob[0].size();
        int n=ob.size();
        dp[0][0]=ob[0][0]?0:1;
        for(int i=1;i<n;i++)
        {
            if(ob[i][0]==1||!dp[i-1][0])
                dp[i][0]=0;
            else
                dp[i][0]=1;
        }
        for(int i=1;i<m;i++)
        {
            if(ob[0][i]==1||!dp[0][i-1])
                dp[0][i]=0;
            else
                dp[0][i]=1;
        }
        for(int i=1;i<n;i++)
        {
            for(int j=1;j<m;j++)
            {
                if(ob[i][j]==1)
                    dp[i][j]=0;
                else
                    dp[i][j]=dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[n-1][m-1];
    }
};

解答:
之前总是re,也不明白为啥~ 其实转移方程很好想如果当前的地点能到达,则dp[i][j]=dp[i-1][j]+dp[i][j-1]
否则dp[i][j]=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值