原题:
Follow up for “Unique Paths”:
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
大意:
给你一个二维向量,标有数字1表示该地区不可到达,现在问你从(0,0)走到右下角有多少种走法。
class Solution
{
int dp[105][105];
public:
int uniquePathsWithObstacles(vector<vector<int>>& ob)
{
memset(dp,0,sizeof(dp));
int m=ob[0].size();
int n=ob.size();
dp[0][0]=ob[0][0]?0:1;
for(int i=1;i<n;i++)
{
if(ob[i][0]==1||!dp[i-1][0])
dp[i][0]=0;
else
dp[i][0]=1;
}
for(int i=1;i<m;i++)
{
if(ob[0][i]==1||!dp[0][i-1])
dp[0][i]=0;
else
dp[0][i]=1;
}
for(int i=1;i<n;i++)
{
for(int j=1;j<m;j++)
{
if(ob[i][j]==1)
dp[i][j]=0;
else
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
return dp[n-1][m-1];
}
};
解答:
之前总是re,也不明白为啥~ 其实转移方程很好想如果当前的地点能到达,则dp[i][j]=dp[i-1][j]+dp[i][j-1]
否则dp[i][j]=0