用到了 物理的相对运动, 其实就是向量, 两个向量相减就是他们相对位移的方向
题意:
有甲乙两条狗分别沿着一条折线奔跑,已知它们同时从各自的起点出发,同时到达各自的终点。求整个过程中两条狗的最大距离Max与最小距离Min的差值。
分析:
假设甲乙的路线都是一条线段的简单情况。运动是相对的,我们假定甲不动,乙相对甲的运动也是匀速直线运动。所以就将问题转化成了点到直线的最小和最大距离。
甲或乙每到达一个拐点所对应的时刻称作“关键点”,那么没两个关键点之间的运动都可看做上面分析的简单情况。我们只要及时更新甲乙的位置即可。
LenA和LenB分别是两条路线的总长,因为运动时间相同,不妨设二者的运动速度为LenA和LenB,这样总时间为1
#include <cstdio>
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std;
struct Point
{
double x, y;
Point (double x = 0, double y = 0) : x(x), y(y) { } //构造函数, 方便代码书写
};
typedef Point myvector;
Point a[60], b[60];
double Max, Min;
// 向量 + 向量 = 向量
myvector operator + (myvector A, myvector B) { return myvector(A.x + B.x, A.y + B.y); }
// 点 - 点 = 向量
myvector operator - (Point A, Point B) { return myvector(A.x - B.x, A.y - B.y); }
//向量 * 数 = 向量
myvector operator * (myvector A, double p) { return myvector(A.x * p, A.y * p); }
//向量/数 = 向量
myvector operator / (myvector A, double p) { return myvector(A.x / p, A.y / p); }
// 小于号
bool operator < (const Point & a, const Point & b)
{
if (a.x == b.x) return a.y < b.y;
return a.x < b.x;
}
//比较
const double eps = 1e-10;
int dcmp(double x)
{
if(fabs (x) < eps) return 0;
else return x < 0 ? -1 : 1;
}
// 恒等于号
bool operator == (const Point & a, const Point & b)
{
return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
}
// 计算向量 A B 的点积, A*B = |A| * |B| * cosß
double Dot (myvector A, myvector B) { return A.x*B.x + A.y*B.y; }
// 计算向量 A 的长度
double Length (myvector A) { return sqrt (Dot(A, A)); }
// 计算向量 A,B 的夹角,是cos 有公式
double Angle (myvector A, myvector B)
{ return acos(Dot(A, B) / Length(A) / Length(B)); }
// 计算叉积,AxB = |A| * |B| * sinß, 得到的是与这两个向量垂直的向量
double Cross(myvector A, myvector B) { return A.x * B.y - A.y * B.x; }
// 点到线段的距离, 有两种可能, 一种点在线段上方, 这时候算垂直, 不在线段上方;
double DistanceToSegment(Point P, Point A, Point B)
{
if( A == B) return Length(P-A); //如果线段是一个点
myvector v1 = B - A, v2 = P - A, v3 = P - B;
if(dcmp(Dot(v1, v2)) < 0) return Length(v2);
else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);
else return fabs(Cross(v1, v2)) / Length(v1);
}
void update(Point P, Point A, Point B)
{
Min = min(Min, DistanceToSegment(P, A, B)); //点到线段的距离,是最近的
Max = max(Max, Length(P-A));// 最长要么
Max = max(Max, Length(P-B));
}
int main()
{
int T, m, n, Case = 0, i;
cin >> T;
while(T--)
{
double LenA = 0.0, LenB = 0.0;
cin >> m >> n;
for(i = 0; i < m; i++)
{
cin >> a[i].x >> a[i].y;
if(i > 0)
LenA += Length(a[i]-a[i-1]);//计算出来A的路程总长,设1s到达,则又是他的速度
}
for(i = 0; i < n; i++)
{
cin >> b[i].x >> b[i].y;
if(i > 0)
LenB += Length(b[i]-b[i-1]);
}
int Sa = 0, Sb = 0; //A B当前端点的编号
Point Pa = a[0], Pb = b[0];
Min = 1e9, Max = -1e9;
while(Sa < m - 1 && Sb < n - 1)
{
double La = Length(a[Sa+1] - Pa); //AB分别到下一拐点的距离
double Lb = Length(b[Sb+1] - Pb);
double t = min(La / LenA, Lb / LenB);
myvector Va = ((a[Sa+1] - Pa) / La) //这段时间的单位向量
* t * LenA; //这段时间内单位向量所走向量
myvector Vb = ((b[Sb+1] - Pb) / Lb) * t * LenB;
//printf("Va %f %f Vb %f %f\n", Va.x, Va.y, Vb.x, Vb.y);
update(Pa, Pb, Pb + Vb - Va);
Pa = Pa + Va;
Pb = Pb + Vb;
if(Pa == a[Sa+1]) Sa++;
if(Pb == b[Sb+1]) Sb++;
}
printf("Case %d: %.0lf\n", ++Case, Max - Min);
}
}