TensorFlow Recommenders 迎来更新 — 可扩展检索和特征交互建模

TensorFlow Recommenders v0.3.0引入了ScaNN支持,实现快速检索,以及Deep & Cross Network(DCN)以改进特征交互建模。新特性助力构建高性能、可扩展的推荐系统,支持大规模候选条目的高效检索和深度特征交互学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

文:Ruoxi Wang、Phil Sun、Rakesh Shivanna 和 Maciej Kula,Google

 

9 月,我们开源了 TensorFlow Recommenders,这个库能够帮助您轻松构建最先进的推荐系统模型。现在,我们高兴地宣布 TensorFlow Recommenders (TFRS) 的新版本 v0.3.0

新版本引入了两项重要功能,二者对于构建和部署高质量、可扩展的推荐模型至关重要。

第一项新增功能是对快速可扩展近似检索提供内置支持。通过利用 ScaNN,TFRS 现已能够构建在数毫秒内即可从数以百万计的条目中检索出最佳候选条目的深度学习推荐模型,同时又保留了部署单个“输入查询特征即可输出建议”的 SavedModel 对象的便利性。

第二项新增功能是支持用于特征交互建模的更出色技术。新版本 TFRS 包含了 Deep & Cross Network 的实现:一种高效架构,用于学习深度学习推荐模型中使用的所有不同特征之间的交互。

如果您迫切希望尝试新增功能,可以直接前往我们的高效检索特征交互建模教程。也可以登陆B 站 Google 中国 TensorFlow 官方频道收看《使用 TensorFlow 搭建推荐系统(全八讲)》视频获取帮助。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值