文:贝壳找房技术团队
贝壳找房作为行业领先的房产服务互联网平台,通过开放数据资源和技术能力,聚合和赋能全行业的服务者,打造产业互联网下的“新居住”品质服务生态,致力于为全国家庭的品质居住提供全方位服务连接,涵盖二手房、新房、租房、装修和社区服务等众多类目。
今天我们主要针对一个打算购买二手房的用户,来看一下 ta 来到贝壳 App 中所经历的一切,以及平台背后进行的策略优化。首先,用户会现在 App 上浏览一些 ta 感兴趣的房源。接着,当 ta 看到一套合适的房源时,会跟经纪人进行线上沟通,从而产生商机。随着聊天的深入,ta 对这个房子的兴趣越来越大,于是决定是时候去实地看一下这个房子了,就和经纪人约了线下带看。最后,ta 很满意这个房子,在贝壳达成了成交,并且在后续经纪人的帮助下成功过户,完成了购房。
图 1 用户在贝壳 App 上的行为流程图
这个流程囊括了用户在贝壳 App 上的几个重要环节:浏览、商机、带看、成交和售后。每个环节我们都有专门的团队来负责优化,其中,AI 选房团队通过结合 DNN 学习到静态信息与 LSTM 学习到的动态信息,帮助经纪人在作业过程中聚焦好房,极大的提高了去化率;推荐团队,通过实践 Embedding、WDL、DeepFM 等深度模型,持续提升场景的点击和商机转化效果,改善用户体验;图像团队通过提供一体化的 OCR 流程,使得交易流程得到改善的同时还大大地降低了人工成本。
而这些好效果的背后,都有两个共同的因素:深度学习和 TensorFlow 框架。随着数据量和算力的增加,选择深度学习早已顺理成章,而我们选择 TensorFlow 作为深度学习的框架,主要有以下几个原因:
-
提供了很多拿来即用的 SOTA 模型,快速解决业务问题的同时也有效地提升了模型的迭代效率。
-
支持 python、与 numpy 完美结合,降低数据预处理门槛。
-
提供高性能、灵活的模型服务框架——TF serving,使得训练和线上预测可以无缝衔接。
-
提供强大的可视工具——TensorBoard,帮助我们快速发现模型问题。
-
完善的社区,遇到问题可以快速找到解决方案。
AI 选房
作为一家房产服务互联网平台,如何在海量房源中选出能够快速成交的房源是对平台和经纪人来说都是一件非常重要同时具有挑战的事情,它可以提升经纪人的工作效率和业绩,加速平台中房源的成交。
人工选房流程
选快速成交房源的工作在线下门店中是一直存在的,普遍做法是开会由门店中的经纪人提供经验投票选出。但是,这个方法存在如下的问题:
-
经纪人时间有限,开会选房成本高。
-
经纪人带有主观性。
-
房源数量过多,经纪人无法了解所有房源质量。
AI 选房模型介绍
为了帮助经纪人和平台更高效客观准确地选出能够快速成交的房源,我们提出了 AI 选房,将深度学习模型应用到选房中。
我们使用过去 90 天的房源数据训练深度学习模型,预测当前房源在未来 14 天的成交概率。
在特征选择上,从影响房源成交因素中选择了 6 大方向上百维特征,具体如下:
图 2 AI 选房模型特征
在模型上,我们同时采用了 DNN 和 LSTM 两种深度学习模型。其中,DNN 处理房源属性、价格等静态特征,LSTM 处理经纪人作业、客源关注量等时序特征。最终,将两种模型的输出进行融合后得到房源的成交概率。
图3 AI 选房模型结构图
AI 选房上线后,选房效果大大超过人工选房的效果,准确率相比于人工提升了 56%,促进了更多房源的快速成交。同时,将经纪人从选房中解放,有效帮助经纪人盘点当前维护的房源,指导经纪人作业。
智能推荐
在贝壳,由于推荐场景、业务和物料类型众多,因此孕育而生了智能推荐平台。通过建设平台能力来快速支持和满足业务上的需求。推荐场景大大小小有上百个,比如一些典型的场景,如首页推荐、详情页推荐、搜索少无结果推荐等流量大的核心场景。也有如经纪人与用户聊天过程中的房源推荐、给用户推荐其关注房源相似的房源等。
我们把一个推荐场景的策略划分为业务策略和算法策略两部分。业务策略包括展示提权、同质打散、业务干预等。算法策略则包括黑名单、召回、融合、排序和理由这 5 个部分,如图 4 所示。