SSE2介绍及其简单用法举例

本文详细介绍了SSE2指令集的发展历程、与MMX及SSE指令集的区别,并列举了支持该指令集的处理器型号。同时提供了SSE2基本用法的C++示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SSE2,全名为Streaming SIMD Extensions 2,是一种IA-32架构的SIMD指令集。SSE2是在2001年随着Intel发表第一代Pentium 4处理器也一并推出的指令集。它延伸较早的SSE指令集,而且可以完全取代MMX指令集。在2004年,Intel再度扩展了SSE2指令为SSE3指令集。与70条指令的SSE相比,SSE2 新增了144条指令。在2003年AMD也在发布AMD64的64比特处理器时跟进SSE2指令集。

SSE2延伸了MMX指令群使用XMM暂存器来运算,这能让开发人员完全避免让8个64比特MMX暂存器与原有的IA-32浮点运算暂存器共用。而这样子就能够不需要切换MMX与x87浮点运算的前提之下混合SIMD标量与浮点矢量运算。不过,这不会因为SSE的暂存器的精度提高而让运算结果的精度也提高。而还有部分的SSE2指令集包含了一系列的CPU高速缓存控制指令。当处理理论上无限的数据流,还有数字格式转换指令所产生出来的大量补数,能够使高速缓存污染有效的降低。AMD在AMD64架构上的SSE2再新增额外8个暂存器,把暂存器的量提升到16个(XMM0~XMM15)。这些额外的暂存器只有运行于64比特的模式下才能够使用。2004年,Intel也采用这些额外的暂存器于它的x86-64(Intel 64)架构。

    MMX与SSE2的差别:SSE2让MMX指令群使用XMM暂存器来运算。换句话说,现有的MMX脚本能够完全转换成SSE2。不过XMM的暂存器是MMX暂存器的两倍大,循环计数器与存储器访问机制也会跟着修改来因此变化。而即使一个SSE2指令能够比MMX指令操作多两倍数据量,性能也并没有很明显的提升。有两个主要原因导致此现象:存储器内部访问SSE2的数据并没有以16字节的间隔对齐,这会造成明显的性能损失。还有在大多数的x86架构实现上SSE2的指令吞吐量是小于MMX的。Intel 首先面对第一个问题的解决方案是在SSE3指令中新增一个指令,能够在处理未对齐的数据时减少overhead。而第二个问题也在Core微架构中将运行引擎加宽而解决。

    支持SSE2的编译器:(1)、微软的Visual C++与MASM;(2)、Intel C++ 编译器;(3)、GCC 3及更高版本;(4)、Sun Studio Compiler Suite。

支持SSE2指令集的处理器:(1)、Athlon 64Sempron 64Turion 64 等为主的 AMD K8 架构处理器;(2)、PhenomPhenom IIAthlon II 等为主的 AMD K10AMDK10.5 架构处理器;(3)、Pentium 4XeonCeleronCeleron D 等为主的 Intel NetBurst 架构的处理器;(4)、Intel Pentium M 与 Celeron M;(5)、Intel Core 架构的处理器,包括 Core Duo、Core Solo 等;(6)、IntelCore 2 架构的处理器,包含 Core 2 Duo、Core 2 Quad、Core 2 Extreme 等;(7)、Intel Core i3Core i5Core i7 等;(8)、Intel Atom;(9)、Transmeta(全美达)Efficeon;(10)、VIA(威盛)C7;(11)、VIA Nano

    不支持SSE2处理器的共同特点:SSE2是IA-32架构的延伸。所以目前所有不支持IA-32架构的其他架构一概不支持SSE2。由于x86-64架构的处理器是由IA-32延伸出来的,所有x86-64架构的处理器也都支持SSE2指令集。而有些CPU并没有支持SSE2,但是有其他的指令集可以提供与SSE2相似的功能。下列的IA-32架构的处理器是在SSE2 发表之后才开发的,但是并不支持SSE2指令集:(1)、比 Athlon 64 早推出的 AMD 处理器,包含了所有使用Socket A插槽的处理器;(2)、比Pentium 4早推出的Intel处理器;(3)、VIA的C3处理器;(4)、Transmeta Crusoe处理器。

SSE2 是一套由越来越多的第三方应用和驱动程序使用的关于处理器的标准指令集。

    SSE2 was first introduced on the IntelPentium 4, and are also known sometimes as "Willamette" instructions.These instructions are very similar to the SSE instructions in structure, butallow us considerably more flexibility in crunching numbers. The biggestdifferences between SSE and SSE2 were the ability to deal withdouble-precision, or 64bit, floating-point values as well as with 32bit ones,along with the ability to now work on 128bit integer types in XMM registers aswell. In total, 144 new instructions were added.

简单用法举例:

[cpp]  view plain  copy
  1. #include "stdafx.h"  
  2. //#include <mmintrin.h>//mmx header file  
  3. //#include <xmmintrin.h>//sse header file(include mmx header file)  
  4. #include <emmintrin.h>//sse2 header file(include sse header file)  
  5.   
  6. void Integer_Add(const unsigned char* p1, const unsigned char* p2, unsigned char* p3, int num)  
  7. {  
  8.     __m128i m1 = _mm_loadu_si128((__m128i*)p1);  
  9.     __m128i m2 = _mm_loadu_si128((__m128i*)p2);  
  10.     __m128i m3 = _mm_add_epi8(m1, m2);  
  11.   
  12.     _mm_storeu_si128((__m128i*)p3, m3);  
  13. }  
  14.   
  15. void Integer_Sub(const unsigned char* p1, const unsigned char* p2, unsigned char* p3, int num)  
  16. {  
  17.     __m128i m1 = _mm_loadu_si128((__m128i*)p1);  
  18.     __m128i m2 = _mm_loadu_si128((__m128i*)p2);  
  19.     __m128i m3;  
  20.   
  21.     m3 = _mm_setzero_si128();  
  22.     m3 = _mm_subs_epi8(m1, m2);  
  23.   
  24.     _mm_storeu_si128((__m128i*)p3, m3);  
  25. }  
  26.   
  27. void Integer_Avg(const unsigned char* p1, const unsigned char* p2, unsigned char* p3, int num)  
  28. {  
  29.     __m128i m1 = _mm_loadu_si128((__m128i*)p1);  
  30.     __m128i m2 = _mm_loadu_si128((__m128i*)p2);  
  31.     __m128i m3;  
  32.   
  33.     m3 = _mm_setzero_si128();  
  34.     m3 = _mm_avg_epu8(m1, m2);  
  35.   
  36.     _mm_storeu_si128((__m128i*)p3, m3);  
  37. }  
  38.   
  39. int _tmain(int argc, _TCHAR* argv[])  
  40. {  
  41.     const int num = 16;  
  42.     unsigned char array1[num] = {0x00, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 0x80, 0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0};  
  43.     unsigned char array2[num] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f};  
  44.     unsigned char array3[num] = {0};  
  45.   
  46.     Integer_Add(array1, array2, array3, num);  
  47.     Integer_Sub(array1, array2, array3, num);  
  48.     Integer_Avg(array1, array2, array3, num);  
  49.   
  50.     return 0;  
  51. }  


参考文献:

1、 http://blog.csdn.net/fengbingchun/article/details/18318065

2、http://blog.csdn.net/fengbingchun/article/details/18460199

3、http://zh.wikipedia.org/wiki/SSE2

4、http://blog.csdn.net/zyl910/article/details/8116560

5、http://www.songho.ca/misc/sse/sse.html

6、http://zerocool.is-a-geek.net/?p=422

7、http://courses.engr.illinois.edu/ece390/books/labmanual/inst-ref-simd.html

8、https://www.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-linux-docs/CellProgrammingTutorial/BasicsOfSIMDProgramming.html


原文地址:https://blog.csdn.net/fengbingchun/article/details/18515241

<think>好的,我现在需要回答用户关于SAXPY函数的用法和实现的问题。首先,我需要回忆SAXPY的基本概念。SAXPY是线性代数中的一个基本操作,全称是Single-Precision AX Plus Y,通常在BLAS(Basic Linear Algebra Subprograms)库中定义。它的作用是计算向量标量乘加,即y = a*x + y,其中a是标量,x和y是向量。 接下来,用户可能想知道如何在实际编程中实现SAXPY。根据引用中的例子,比如Fortran中的函数定义,我可能需要展示不同语言中的实现方式。例如,在C语言中,可以通过循环遍历数组来实现。同时,用户可能关心性能优化,比如并行计算或使用SIMD指令,这可以参考引用[2]中提到的算法优化方法。 另外,用户提供的引用中有关于Fortran子程序和函数的区别,这里需要确认SAXPY在Fortran中的实现是否作为子程序或函数。根据BLAS的规范,SAXPY通常作为子程序(subroutine)实现,因为它修改输入参数y而不返回新值,符合引用[1]中对Fortran子程序的描述。 然后,我需要考虑如何结构化回答。首先解释SAXPY的定义和作用,然后给出不同编程语言的示例代码,如C、Python和Fortran。同时,讨论性能优化的方法,比如循环展开、并行处理等,并结合引用[2]中的算法优化概念。 还要注意用户提到的引用[4]中的Taskflow profiler,这可能与性能分析工具相关,可以提及在优化SAXPY时使用性能分析工具来识别瓶颈。 最后,生成相关问题,确保覆盖用户可能感兴趣的扩展话题,如与其他BLAS函数的对比、GPU实现、精度影响等。 需要验证LaTeX格式是否符合要求,例如数学表达式是否正确使用$...$,独立公式用$$...$$。例如,SAXPY的数学公式应为$y = \alpha x + y$,使用行内格式。代码块需要用正确的语法高亮,并确保语言标识正确。 总结步骤: 1. 定义SAXPY及其用途。 2. 展示不同语言的实现代码。 3. 讨论性能优化方法。 4. 应用场景举例。 5. 生成相关问题。 现在需要检查是否有遗漏的信息,并确保引用正确。例如,引用[1]说明Fortran中的函数需要返回值,而SAXPY作为子程序可能不返回值,直接修改参数,这与BLAS的实现一致。引用[2]提到算法优化,可以关联到SAXPY的优化策略。引用[4]的profiler工具可以用于性能分析,但用户问题中没有直接提到,可能在相关问题中涉及。</think>### SAXPY函数解析与实现 SAXPY(Single-Precision AX Plus Y)是线性代数中的基础运算,定义为对向量进行标量乘法和向量加法操作: $$y = \alpha x + y$$ 其中$\alpha$为标量,$x$和$y$为向量。它在科学计算和机器学习中广泛用于向量更新操作[^2]。 --- ### 代码实现示例 #### C语言版本 ```c void saxpy(int n, float alpha, float *x, int incx, float *y, int incy) { for (int i = 0; i < n; i++) { y[i * incy] += alpha * x[i * incx]; } } ``` - `incx`和`incy`表示向量元素的间隔(支持跨步访问) #### Python/NumPy版本 ```python import numpy as np def saxpy(alpha, x, y): return alpha * x + y ``` 通过向量化操作直接实现,底层调用优化过的BLAS库。 #### Fortran子程序(符合BLAS规范) ```fortran SUBROUTINE SAXPY(N, ALPHA, X, INCX, Y, INCY) INTEGER N, INCX, INCY REAL ALPHA, X(*), Y(*) DO I = 1, N Y(1 + (I-1)*INCY) = Y(1 + (I-1)*INCY) + ALPHA * X(1 + (I-1)*INCX) END DO END SUBROUTINE ``` 此处使用子程序(Subroutine)而非函数,因直接修改输入参数`Y`[^1]。 --- ### 性能优化方法 1. **循环展开** 减少循环条件判断次数,例如每次迭代处理4个元素: ```c for (i = 0; i < n; i += 4) { y[i] += a * x[i]; y[i+1] += a * x[i+1]; //...处理i+2/i+3 } ``` 2. **SIMD指令集** 使用AVX/SSE指令实现并行计算: ```c __m256 av = _mm256_set1_ps(alpha); for (i = 0; i < n; i += 8) { __m256 xv = _mm256_load_ps(x + i); __m256 yv = _mm256_load_ps(y + i); yv = _mm256_fmadd_ps(av, xv, yv); _mm256_store_ps(y + i, yv); } ``` 3. **多线程并行化** 使用OpenMP划分循环任务: ```c #pragma omp parallel for for (int i = 0; i < n; i++) { y[i] += alpha * x[i]; } ``` --- ### 典型应用场景 1. **神经网络梯度更新** 权重更新公式$w = w - \eta \nabla w$本质是SAXPY操作。 2. **物理仿真** 计算粒子系统受力后的位置更新:$position = position + velocity \times dt$。 3. **图像处理** 混合两幅图像:$output = \alpha \cdot image1 + (1-\alpha) \cdot image2$。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值