微软 Fairlearn 库的详细使用方法及实例解析

以下是微软 Fairlearn 库的详细使用方法及实例解析,帮助评估和改善机器学习模型的公平性,涵盖数据预处理、公平性指标计算及缓解策略:


1. Fairlearn 的核心功能

  • 公平性评估:量化模型在不同群体(如性别、种族)中的性能差异。
  • 缓解策略:提供算法调整模型,减少偏差。
  • 可视化工具:对比不同群体间的预测结果分布。

2. 安装与基础配置

pip install fairlearn

3. 基础使用示例:贷款审批模型公平性分析

步骤1:加载数据与训练模型
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from fairlearn.metrics import MetricFrame, selection_rate, false_negative_rate
from fairlearn.reductions import GridSearch, DemographicParity

# 加载示例数据集(假设数据包含性别、收入、信用分、审批结果)
data = pd.read_csv("loan_data.csv")
X = data[["income", "credit_score"]]
y = data["loan_approved"]
sensitive_feature = data["gender"]  # 敏感属性:性别('Male', 'Female')

# 划分训练集和测试集
X_train, X_test, y_train, y_test, sf_train, sf_test = train_test_split(
    X, y, sensitive_feature, test_size=0.2, random_state=42
)

# 训练初始模型
model = RandomForestClassifier()
model.fit(X_train, y_train)
步骤2:评
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小赖同学啊

感谢上帝的投喂

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值