谷歌DreamFusion使用方法及实例详解
DreamFusion 是谷歌提出的基于文本生成3D模型的突破性技术,无需3D训练数据,通过2D扩散模型(如Imagen)与NeRF(神经辐射场)结合实现。以下为使用社区开源实现(如dreamfusion-pytorch
)的详细步骤及实例。
一、环境准备
1. 硬件要求
- GPU:NVIDIA GPU(推荐RTX 3090/4090,显存≥24GB)
- 显存:生成单模型需约20GB显存
- 存储:至少50GB空闲空间(用于模型缓存与输出)
2. 安装依赖
# 创建虚拟环境
conda create -n dreamfusion python=3.9
conda activate dreamfusion
# 安装PyTorch(CUDA 11.7)
pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117
# 克隆开源实现(以dreamfusion-pytorch为例)
git clone https://github.com/ashawkey/dreamfusion-pytorch
cd dreamfusion-pytorch
# 安装依赖库
pip install -r requirements.txt