大家好我是小王!
Stable Diffusion(SD)作为一款先进的AI图像生成工具,其边缘检测功能在图像处理中发挥着重要作用。本文将带你深入了解SD边缘检测如何增强图像生成控制力,适用于图像还原、着色、风格化等多元化场景。
SD边缘检测是一种基于深度学习的图像处理技术,它能够自动识别和突出图像中的边缘和轮廓。这一功能不仅能够提高图像的清晰度和对比度,还能够增强图像生成的控制力,使生成效果更加精准和自然。
ControlNet Canny模型简介
今天的SD必备知识系列文章主题为利用ControlNet解锁ControlNet Canny工具。ControlNet Canny模型是SD绘图开发者工具箱中一款强大的法宝工具,可以实现高度可控制的,提取输入图像结构,并进一步图像还原、着色和风格化等。ControlNet Canny可以识别并提取图片里的边缘特征来进行图片生成,可以被用在大部分的图像外形特征还原的场景里。ControlNet Canny是ControlNet中几种线条预处理器(canny、lineart、mlsd、scribble)中识别线条最多的预处理器,因此可以被应用于最大程度的还原照片或线稿上色等众多使用场景。
ControlNet Canny允许用户以自主高度可控的方式控制和操纵SD模型绘图的输出 。ControlNet Canny是采用计算机视觉和深度学习领域的最新研究和开发的成果的技术方法,主要目的是使用户能够在Stable Diffusion模型生成的输出图像中指定并包含特定特征(特征包括:整体图像结构、主体姿势或图像风格化等) 。
ControlNet Canny模型是在Stable Diffusion模型基础上增加了额外的被称为“ControlNet层”的控制层。ControlNet层是由一组神经网络组成,在这组神经网络中的每一个神经网络负责控制生成过程的不同方面(如:控制边缘的强度、控制边缘的位置等)。
ControlNet层是通过使用监督学习算法进行训练的。这也意味着在具有“Canny edge”和相应生成图像的数据集上进行训练。Canny edge图像已经经过边缘检测处理,并且突出显示其中的物体边界。
训练算法使用Canny edge来训练ControlNet层生成具有相同边缘的图像。ControlNet层学习使用Canny edge作为输入,并输出一组“权重”,用于修改生成过程。这些权重控制生成图像中边缘的强度、位置和形状。通过学习这些数据,网络获得了识别关键图像特征并将其纳入Stable Diffusion模型输出的能力。而一旦ControlNet层训练完成,模型就可以用于从任何Canny edge图像生成图像。只需向ControlNet层提供Canny边缘图像,模型就可以生成具有相同边缘的新图像。
ControlNet Canny模型的应用
ControlNet Canny可以让用户掌控Stable Diffusion模型的输出做到精确边缘控制,是一个具有巨大潜力的多功能绘图控制工具,能够被应用于广泛和多样化的创作场景下,提供了无限的创意可能性。
• 控制输出:生成与特定数据集一致或符合特定风格的图像。如图像图像还原、线稿着色与风格化。
• 特定特征图像:生成具有特定特征的图像,如特定姿势、独特风格或特定对象。
• 图像质量改进:通过消除噪声和添加更精细的细节来增强图像质量。
• 图像恢复 :以提高的质量恢复历史照片或损坏的图像。
• 超现实视觉效果 :生成不同程度的超现实图像。
• 创意项目:利用高度的准确性和控制力将用户想象力变为现实。
凭借ControlNet Canny控制特定特征和提高整体质量的能力,ControlNet Canny提升了Stable Diffusion的图像中用户的自主控制和增强性。
ControlNet Canny包含2个选项,分别为:Canny(硬边缘检测)、Invert(对白色背景黑色线条图像反向处理)。Invert预处理器适用于线稿上色预处理线条反转黑白线条。
ControlNet Canny 体验
01. ControlNet参数配置
本文使用绘图配置:
-
• 模型:AWPortrait
-
• 迭代步数:30
-
• CFG:7
-
• 采样器:DPM++ 2M Karras
本文涉及模型下载地址(文末可自行扫描获取):
• AWPortrait
• control_v11p_sd15_canny.pth
• controlnet-canny-sdxl-1.0.safetensors
然后设置SD-WebUI文生图ControlNet配置如下所示:
注意:
-
• 使用ControlNet类型为Canny 。
-
• 预处理器:Canny 或 Invert。
-
• ControlNet模型使用:SD1.5模型:control_v11p_sd15_canny.pth。SDXL版本:controlnet-canny-sdxl-1.0.safetensors。
-
• 文本提示、绘图模型、控制权重、结束控制步骤对于出图效果都有重要的影响,需要适当的调整以选择达到目的效果的绘图。
03. 开始体验之旅
01. 改变主题-人物
1girl,simple background,Turn your back on the audience,half backless,hand covering,black hair,shadow killer,(light yellowdress),outdoor,blue sky,(Sunlight:1.3),(Stand on the top of the hill:1.3),
Canny配置
输出效果
02. 改变主题-鸟
1bird,sunshine,blue bird,
Canny配置
输出效果
03. 线稿-室内设计
Interior design,Bedroom,Soft light,pink bed,warm colors,modern concise style,
Canny配置
输出效果
04.线稿-人物
big eyes,(light yellow dress:1.3),blue eye,purple hair,red lipstick,clean face,pink theme,soft sunshine,side view close-up shot of a beautiful woman holding a kitsune mask in her hands,half covering her face,open eyes,1girl,Mask,(pink mask:1.3),flowers,reality,best quality,high definition,
Canny配置
输出效果
资料软件免费放送
次日同一发放请耐心等待
关于AI绘画技术储备
学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!
感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。
需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
**一、AIGC所有方向的学习路线**
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】