JAVA实现——PTA训练题 1001 害死人不偿命的(3n+1)猜想 (15分)

本文探讨了卡拉兹猜想,一种涉及数学序列的未解之谜。通过对正整数n进行特定操作,直到得到n=1的过程,我们使用递归算法计算达到目标所需的步数。示例展示了当n为3时,需要5步操作。文章提供了完整的Java代码实现。
摘要由CSDN通过智能技术生成

1001 害死人不偿命的(3n+1)猜想 (15分)
卡拉兹(Callatz)猜想:

对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?

输入格式:
每个测试输入包含 1 个测试用例,即给出正整数 n 的值。

输出格式:
输出从 n 计算到 1 需要的步数。

输入样例:
3

输出样例:
5

分析:利用递归可以很清晰的解决该问题,分为三个分支分别判断奇数,偶数和1,如果是1则返回,如果不是1则继续递归。定义一个用来计次的变量,每次递归该变量加1最终打印变量结果。

import java.util.Scanner;
public class Main {
    static int num =0;
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        kan(sc.nextInt());
        sc.close();
        System.out.print(num);
    }
    //定义一个 砍函数 用来递归计算结果
    static int kan(int s){
        if(s==1){
            return 1;
        }
        if(s %2==0){
            ++num;
           return kan(s/2);
        }
        else{
            ++num;
            return  kan((s*3+1)/2);
        }
    }
}

原题目连接:
https://pintia.cn/problem-sets/994805260223102976/problems/994805325918486528

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值