1001 害死人不偿命的(3n+1)猜想 (15分)
卡拉兹(Callatz)猜想:
对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?
输入格式:
每个测试输入包含 1 个测试用例,即给出正整数 n 的值。
输出格式:
输出从 n 计算到 1 需要的步数。
输入样例:
3
输出样例:
5
分析:利用递归可以很清晰的解决该问题,分为三个分支分别判断奇数,偶数和1,如果是1则返回,如果不是1则继续递归。定义一个用来计次的变量,每次递归该变量加1最终打印变量结果。
import java.util.Scanner;
public class Main {
static int num =0;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
kan(sc.nextInt());
sc.close();
System.out.print(num);
}
//定义一个 砍函数 用来递归计算结果
static int kan(int s){
if(s==1){
return 1;
}
if(s %2==0){
++num;
return kan(s/2);
}
else{
++num;
return kan((s*3+1)/2);
}
}
}
原题目连接:
https://pintia.cn/problem-sets/994805260223102976/problems/994805325918486528