多模态智能体技术与应用
近年来,人工智能的飞速发展开启了一个变革性的新时代。在这一时代背景下,系统不再局限于处理单一的数据模态。随着多模态大模型的发展,能够整合并推理文本、图像、音频、视频及传感器输入等多源数据的多模态AI智能体,已成为新一代智能系统的基石,有望弥合人类语境理解与机器智能之间的鸿沟,支撑个性化医疗、自主机器人、可解释决策等应用场景。为此,《数据智能》(Data Intelligence)启动主题专刊—多模态智能体技术与应用,旨在探索这一动态领域的前沿方法、创新应用与关键挑战,同时促进学术界与产业界的跨学科对话。
专刊主题
<
多模态智能体架构
多模态大模型
空天大模型
遥感大模型
多模态智能体的可解释性
多模态检索增强生成
多模态数据与知识融合
跨模态对齐与表征学习
多模态内容生成
多模态知识推理
多模态信息检索
高效多模态学习
具身AI智能体
面向低空经济的多模态智能体
面向创意与工业应用的多模态智能体
特邀编辑 ▼
▂▂
吴天星
东南大学
tianxingwu@seu.edu.cn
吴天星,东南大学计算机科学与工程学院长聘副教授、院长助理、博士生导师,江苏省“双创博士”,江苏省“科技副总”。主要研究方向:知识图谱、大语言模型、数据挖掘。曾获2019年江苏省计算机学会优秀博士学位论文奖,2020年东南大学优秀博士学位论文奖,SIGIR 2024最佳短文提名,CCKS 2022、WISA 2024最佳论文奖,OpenKG 2024优秀开放资源奖。主持国家自然科学基金面上项目、青年项目,江苏省“双创博士”项目,南京市留学人员科技创新项目(B类资助)等纵横向课题多项。在人工智能领域国际期刊及会议发表论文60余篇,10余项国家发明专利获得授权。担任中国中文信息学会语言与知识计算专委会、大模型与生成专委会委员,中国计算机学会信息系统专委会、自然语言处理专委会执行委员,CCF YOCSEF南京24-25年度主席,国际著名期刊International Journal on Semantic Web and Information Systems、Data Intelligence编委及多个国际著名会议的领域主席、(高级)程序委员会成员,包括AAAI、IJCAI、NeurIPS、ACL、WWW、KDD、SIGIR、ICML、ICLR等。
▂▂
周奕毅
厦门大学
zhouyiyi@xmu.edu.cn
周奕毅,厦门大学信息学院/人工智能研究院双聘副教授、博士生导师,厦门市“双百计划”领军人才、厦门大学南强青年拔尖B类人才、小米学者。主要研究方向为视觉-语言高效多模态学习,在IEEE TPAMI、IJCV、IEEE TIP、CVPR、ICCV、NeurIPS、ICML和ICLR等CCF 推荐期刊及会议发表论文50余篇,多篇论文被CVPR、ACM MM、ECCV等领域顶会评为口头报告文章(Oral Paper)。
▂▂
董建锋
浙江工商大学
djf@zjgsu.edu.cn
董建锋,浙江工商大学研究员。研究方向为跨媒体智能、多模态大模型等。近五年共发表学术论文50余篇,其中以第一或通讯作者在CCF-A 类期刊/会议TPAMI,TIP,CVPR,ICCV,NeurIPS等发表论文20余篇,论文被引用3000余次;主持国家自然科学基金、浙江省重点研发计划“领雁”等项目10余项。曾获2024年度ACM杭州分会新星奖、中国多媒体大会ChinaMM 2023唯一最佳学生论文奖;已入选斯坦福大学发布的2024年度全球前2%顶尖科学家榜单、中国科协青年人才托举工程、浙江省高层次人才特殊支持计划青年人才。
重要日期 ▼
投稿截止日期:
2025年6月30日 (23:59 AOE)
<
录用通知日期:
2025年9月15日 (23:59 AOE)
<
最终稿件提交日期:
2025年10月15日 (23:59 AOE)
<
出版时间:
稿件一经录用,立刻在线发表
<
投稿流程 ▼
请通过稿件提交系统(https://mc03.manuscriptcentral.com/di)提交投稿,选择“Multimodal AI Agents: Techniques and Applications”专刊,并在投稿信中注明投稿至“Special issue on Multimodal AI Agents: Techniques and Applications”。
<
关于Data Intelligence:
<
《数据智能》(Data Intelligence,DI)致力于推动数据科学、人工智能及其跨学科应用领域的最新研究成果与技术进展的广泛传播与深入交流。DI通过发表高质量的研究论文、综述文章、技术报告、案例研究、最佳实践以及各类数据资源,促进学术界与工业界的紧密合作,加速数据智能技术的创新与应用,为领域的发展与进步贡献力量。
《数据智能》被中国科学院期刊分区表、Scopus、ESCI和EI收录。CiteScore为6.3,在图书馆与信息科学类别中排名前12%(Q1),在计算机科学-计算机科学应用类别中排名前27%(Q2),在计算机科学-信息系统类别中排名前27%(Q2),在计算机科学-人工智能类别中排名前34%(Q2)。在中国科学院期刊分区表中,位列计算机科学大类2区,计算机科学-人工智能、计算机科学-信息系统、计算机科学-跨学科应用小类2区。
OpenKG
OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。
点击阅读原文,进入 OpenKG 网站。