1、生成数据
(1)绘制简单的图像:折线图、散点图、自动计算数据
import matplotlib.pyplot as plt
"""注释内替换:折线图变为散点图"""
input_values = [1, 2, 3, 4, 5]
squares = [1, 4, 9, 16, 25]
plt.plot(input_values, squares, linewidth=5) # plt.scatter(input_values, squares, s=100)
# 设置图表标题,并给坐标轴加上标签
plt.title("Square Numbers", fontsize=24)
plt.xlabel("Value", fontsize=14)
plt.ylabel("Square of Value", fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', labelsize=14) # plt.tick_params(axis='both', which='major', labelsize=14)
plt.show()
import matplotlib.pyplot as plt
"""自动计算数据"""
x_values = list(range(1,1001))
y_values = [x**2 for x in x_values]
# c='red' c=(0, 0.9, 0.9) 0-1之间取值,值越接近0,指定的颜色越深,值越接近1,指定的颜色越浅
# colormap 颜色映射;用较浅的颜色来显示较小的值,并使用较深的颜色来显示较大的值
plt.scatter(x_values, y_values, c=y_values, cmap=plt.cm.Blues, edgecolor='none', s=40)
# 默认蓝色点和黑色轮廓,删除数据点的轮廓
# 设置图表标题并给坐标轴加上标签
plt.title("Square Numbers", fontsize=24)
plt.xlabel("Value", fontsize=14)
plt.ylabel("Square of Value", fontsize=14)
# 设置每个坐标轴的取值范围
plt.axis([0, 1100, 0, 1100000])
plt.show() # 自动保存图表:plt.savefig('squares_plot.png', bbox_inches='tight')
# 保存在项目文件中; 第二个参数:将图表多余的空白区域裁剪掉
(2)随机漫步
rw_visual.py 绘制随机漫步的点
import matplotlib.pyplot as plt
from random_walk import RandomWalk
# 只要程序处于活动状态,就不断的模拟随机漫步
while True:
# 创建一个RandomWalk实例
rw = RandomWalk(50000) # 默认是5000
rw.fill_walk()
# 设置绘图窗口的尺寸
plt.figure(figsize=(10,6))
point_numbers = list(range(rw.num_points))
plt.scatter(rw.x_values, rw.y_values, c=point_numbers, cmap=plt.cm.Blues, edgecolors='none', s=1)
# 突出起点和终点
plt.scatter(0, 0, c='green', edgecolors='none', s=100)
plt.scatter(rw.x_values[-1], rw.y_values[-1], c='red', edgecolors='none', s=100)
# 隐藏坐标轴
plt.axes().get_xaxis().set_visible(False)