【算法分析】动态规划经典问题:0-1背包

这篇博客探讨了经典的0-1背包问题,通过动态规划寻找最优解。介绍了问题描述,提供实例,并详细解析了解题思路,包括状态转移方程和最大价值计算方法。还给出了实现代码和预期的程序结果。
摘要由CSDN通过智能技术生成

题目描述

给定n种物品和一背包。物品i的重量是W[i],其价值为V[i],背包的容量为C。问:应该如何选择装入背包的物品,使得装入背包中物品的总价值最大?

举例说明

假设物品数目 n=5,物品的重量分别为W[n]={2,2,6,5,4},物品的价值分别为V[n]={6,3,5,4,6},背包容量C=10,X[n]={0,1}用来表示物品装或不装入背包。

解题思路

定义一个数组m[][],i:第i个物品;j:背包容量;m[i][j]:前面i个物品在j容量时的最大价值。

(1)状态转移方程

(2)最大价值:先从i=1开始,下标表示哪几个物品价值之和。

(3)代码


                
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值