numpy中的轴及transpose转置

首先我们获得一个二维数组

import numpy as np

arr = np.arange(4).resize(2,2)

这个数组是这样的:     

arr = \begin{bmatrix} 0&1 \\ 2&3 \end{bmatrix}

#转置方法1  显式制定交换的轴
arr.transpose((1,0))
#转置方法2 省略交换轴的参数
arr.transpose()
#转置方法3
arr.T

以上三种方法都将得到arr数组的转置:

arr^{T} = \begin{bmatrix} 0&2 \\ 1&3 \end{bmatrix}

数组的转置其实是这样做到的:

交换了红色列和蓝色列,得到新的数组:

arr^{T} = \begin{bmatrix} 0&2 \\ 1&3 \end{bmatrix}

我们再来看一下三维数组的换轴:

首先获得三维数组:

arr = np.arange(0, 16).reshape((2, 2, 4))

[[[ 0  1  2  3]

  [ 4  5  6  7]]

 [[ 8  9 10 11]

  [12 13 14 15]]]

交换轴:

arr.transpose((1, 0, 2))

相当于交换了蓝色index列和红色index列,交换完的数组变为:

 

[[[ 0  1  2  3]

  [ 8  9  10  11]]

 [[ 4  5 6 7]

  [12 13 14 15]]]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值