Opencvsharp—matchshape算子实现简单的形状匹配

本文介绍了一种基于OpenCV的形状匹配方法,该方法通过轮廓检测实现模板匹配,并详细解释了matchShapes函数的工作原理及其应用实例。

算子:

matchShapes( InputArray contour1, InputArray contour2, int method, double parameter )

(1)参数1是待匹配轮廓或者灰度图像

(2)参数2同参数1

(3)比较参数1和2相似度的方法,opencv提供了三种如下:

            CV_CONTOURS_MATCH_I1
            CV_CONTOURS_MATCH_I2
            CV_CONTOURS_MATCH_I3

(4)参数4为目前还不支持,使用时赋个0就ok。

针对三种匹配方法进行比较,结果如下:
在这里插入图片描述
形状匹配过程:

  1. 将待识别图像 -> 灰度处理 -> 自动阈值分割

  2. 通过轮廓检索函数 cv.findContours 找到待识别图像所有轮廓

  3. 模板图像 -> 灰度图像 -> 自动阈值分割

  4. 通过轮廓检索函数 cv.findContours 找到模板图像中目标的外轮廓

  5. 将第2步得到的轮廓逐一和第4步得到的轮廓 通过 cv.matchShapes 函数进行形状匹配。找到其中最小值,最小值对应的待识别图像中的轮廓即为匹配到的模板图像

  6. 标出在待识别图像中找到的模板图像

注意:利用mathshape得到的匹配分值越小,则两个轮廓越相似,越大则越不相似。在匹配过程中会通过匹配分值与设定的分值进行比较,在保证匹配效果完美的情况下,设定的分值越低越好,如果设定的匹配分值略高,可能会导致两个完全不相似的形状匹配成功(亲身实验,分值设高,利用三角形会匹配到圆形)。

另外,matchShapes函数其实比较的是两个轮廓的Hu不变矩。Hu矩特性:具有旋转,缩放和平移不变性。由Hu矩组成的特征量对图片进行识别,优点就是速度很快,缺点是识别率比较低。 因此Hu不变矩一般用来识别图像中大的物体,对于物体的形状描述得比较好,图像的纹理特征不能太复杂。

代码:

(1)创建形状轮廓模板

vector<Point> ImageTemplateContours(Mat img_template)
{
   
   
	//灰度化
	Mat gray_img_template;
	cvtColor(img_template, gray_img_template, COLOR_BGR2GRAY);
 
	//阈值分割
	Mat thresh_img_template;
	threshold(gray_img_template, thresh_img_template, 0, 255, THRESH_OTSU);
	//膨胀处理
	Mat ellipse = getStructuringElement(MORPH_ELLIPSE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值