numpy.count_nonzero用法详解

numpy.count_nonzero是用于统计数组中非零元素的个数

详细用法: numpy.count_nonzero(a, axis=None, *, keepdims=False)

a: 为需要统计数组名

axis: 为统计的轴,当axis=0时统计数组y轴(每列) 非零元素个数,当axis=1时统计数组每 x轴(每行) 非零元素个数, 另外,axis可以为元组

具体还是看下例子帮助理解下吧👇

一个栗子:

import numpy as np

a = np.zeros((3,4))
print(np.count_nonzero(a))  
'''
0
'''
b = np.eye(4)
print(np.count_nonzero(b))  
'''
4
'''
c = np.array([[1,2,0],[0,1,0]])
print(c)
'''
[[1 2 0]
 [0 1 0]]
'''
print(np.count_nonzero(c,axis=0)) 
'''
[1 2 0]
'''
print(np.count_nonzero(c,axis=1)) 
'''
[2 1]
'''
d = np.array([[[1,2,1],[0,1,2],[0,2,3],[0,2,3]],[[1,2,1],[0,1,2],[0,2,3],[0,2,3]]])
print(d)
'''
[[[1 2 1]
  [0 1 2]
  [0 2 3]
  [0 2 3]]

 [[1 2 1]
  [0 1 2]
  [0 2 3]
  [0 2 3]]]
'''
print(np.count_nonzero(d,axis=0)) 
'''
[[2 2 2]
 [0 2 2]
 [0 2 2]
 [0 2 2]]
'''
print(np.count_nonzero(d,axis=1))
'''
[[1 4 4]
 [1 4 4]]
'''
print(np.count_nonzero(d,axis=(0,1))) #[2 8 8]
print(np.count_nonzero(d,axis=(0,1,2))) #18

希望这个例子可以便于大家理解,上面还有个keepdims,我也不是很清楚这是啥,需要了解的可以看下官网

官网直达链接:numpy.count_nonzero

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值