基于灰度直方图短时能量的高动态工业X射线图像自动窗口

0摘要:

去除16位灰度级图像的冗余(redundant)信息不仅有利于观察感兴趣的区域,而且也是图像增强的一个关键步骤。在这篇文章,提出了一种针对灰色直方图短时能量的高动态工业x射线图像的自动窗口算法。我们首先计算高位图像中短时帧直方图的平均能量值,然后使用双阈值来检测(inspection)包含有用信息的帧。最后,将检测到的帧的端点灰度值视为窗口端点,通过比较和搜索图像对比度的最大值,遍历(traversed)并确定最合适的帧长度和帧偏移。通过一系列对比实验,定性和定量地分析了该算法的有效性(validity)和实用性。结果表明灰度箱之间的距离被自动拉伸,并且在不改变像素之间关系的情况下图像的对比度得到增强。此外, 还删除了冗余背景信息。

1介绍

数字平板板在工业检测中的应用越来越广泛, 由于其具有广泛的动态范围、高效的检测量子效率、高分辨率(resolution)和大的灰度深度等特性, 可以大大取代传统的图像增强器(intensifier)。使用平板显示器的图像编码通常为1216位,覆盖一个很大的动态范围,它不能由一个8位设备显示。为了自动观察工业生产线中工件内部的异常结构,对目标区域优化图像的对比度是尤其重要,目标区域易于识别图像的各种缺陷。

最先进(state-of-the-art)的图像增强技术可以分为三类:将图像分解(decomposing)成高频和低频信号进行操作[6.7];基于变换的技术[8.9]和直方图修改技术[10.11]。线性多尺度方法通过在空间(spatial)频率范围内分解图像来增强x射线图像[12.13],但是,由于平滑的强边缘和噪声混合在了与缺陷检查相关的细节,引入了光晕工件。直方图均衡化(HE)是一种有效的图像对比度增强方法。HE和它的变化得益于在全局强度上执行的传递函数。但是它可能会显著地改变图像的亮度并导致不希望的伪影(artifacts)。

虽然精确的直方图规范保证了直方图几乎是理想的,但是这种技术的一个主要的缺点是必须手动地(manually)指定所要求的结果图直方图。其结果是,由于直方图轮廓是从图像到图像变化,所以不能自动应用于其他图像。为了保持图像中的灰度关系,为了更接近从工件中获得的数字图像, 一个简单的解决方案是压缩动态范围。工业X射线图像中采集到的像素值与检测缺陷的亮度和对比度没有直接关系。工业X射线图像中采集到的像素值与检测缺陷的亮度和对比度没有直接关系。首选的窗口将是扩展兴趣区域(ROI)的对比,并压缩那些不感兴趣的对比度。通常,除了对人眼的感知外,没有提供关于理想的窗宽和窗层的额外信息,这使得自动窗口在技术上具有挑战性。此外,自动窗口的技术是开发基于机器智能的检测系统的一个重要特征。

为了达到最佳的视觉效果,手动调整显示窗口是一种传统的方法。然而,描述一个人类专家对各种工业射线照片的显示窗口参数进行调整是极其复杂的。此外,调整结果是主观的(subjective),很大程度上取决于个人偏好(preference),主要包括监测和外部照明环境的观察条件的不同而变化。在一个通用的自动W-L调整算法中,几乎不可能解释所有这些问题。

为了解决不同医疗模式的W-L问题(如x射线、计算机断层扫描、磁共振成像),做出了一些成果去调整过程自动化。这些工作可以分为三组:手动方法查找W-L值、操作员提供一些输入的半自动方法以及自适应和自动方法。

Wendt III[16]首先通过读取图像头信息和记录手动调整的窗口参数以及多个像素值的统计来对不同类型的MR图像进行分类。然后,温特三世根据图像类型计算了同一系列图像的显示参数。不幸的是,这种算法对于自动化来说有些不切实(impractical),因为必须在程序中添加新的规则,以反映MR图像获取过程中的新变化。

Ohhashi等人[17]开发了一种基于神经网络的自动调整显示窗口的方法,但它是一种纯粹的基于直方图的方法。非常相似的图像直方图可能有不同的空间分布,这导致了窗口调整的参数不真实。

赖和方[18,19]提出了一种基于分层神经网络算法。MR图像的两个小波直方图特征和空间统计信息被用于特征产生。W-L参数是由与窗口宽度/中心值相关联的一系列MR图像来学习的,这些是由人类专家调整的。

美国专利[20]与一种自动窗位和窗宽调节系统的数字图像显示装置相结合,采用自学习成像法。在神经网络训练集中加入一种在神经网络训练集中没有出现的新的输入图像时,纯的神经网络的方法可能不靠谱或不准确。在生产线上,有许多新设计的工作部件需要检查,它们有各种形状、结构、厚度,需要改变x射线管电流和电压来获取图像。

在美国专利[21]中,设计了一个透明混合因子(transparencyblending factor),用于两个或更多图像的同步W-L调整,主要用于图像同步(synchronization)显示。该方法不适用于单幅图像的w-l调整。

美国专利[22]提出了一种W-L调整方法,该方法是基于对图像显示的放射科医生标准的建模。窗口的宽度/水平是通过身体部分/线圈类型决定阈值来定义的,并在ROI的基础上对已处理的直方图进行调整,进一步对线性和非线性图像强度进行重映。根据这种方法,如果用于工业x射线射线照相,通常是工作部件的缺陷区域,将很难从在线图像中自动提取出来作为特征,位置等。

为了克服上述缺点,消除x射线射线照相中多余的信息,最佳对比度增强效果的理想直方图的组成部分应在灰度范围内展开,尽量避免各箱之间的距离。本文提出了一种自适应窗口调整算法,该算法通过对有用灰度值的鲁棒端点检测来解决高动态范围的问题。

 

2 窗函数法

2.1窗口映射

窗口是一种拉伸一定范围灰度值的过程,这是提高原始图像的感知对比度的常用方法。传统显示器(通常是8位)所使用的灰度范围,是针对人眼对光线水平的微小差异的敏感度。然而,12 16位的原始图像通常有409665536个灰色级别,因此必须在不丢失工业应用程序的工件图像的结构上有价值特性的情况下进行窗口调整。窗口的宽度是对比拉伸的灰色水平而窗口水平是这个范围的中心值。一幅图像的对比对和亮度是由这俩个参数决定的。

TmaxTmin分别是原图像中选定窗口的上限和下界。

在窗口中选择的灰度被拉伸并映射到显示窗口,变化范围从maxmin

假设fxy)表示原始图像中像素(xy)的灰色值.

gxy)表示拉伸图像中像素(xy)的灰度值。

g(x,y)的定义:

Tmax和Tmin..........窗口水平

在原始的直方图中,低于Tmin的值被分配给min,超过Tmax的值被分配给max

以图1为例,[TminTmax]的值为[820017000][28,00036000]

[minmax]最大值为[0255]

(图一:在不同窗口水平/宽度的拉伸下,一个代表性图像的结果映射到[0,255]灰度。窗口的水平/宽度左边是12600/8800,右边的是32000/8000)

通常情况下,这个查找表用于避免公式(1)中对整个图像的每个像素映射的低效计算。在窗口[Tmin,Tmax]中,每一个被拉伸的值都是预先计算的,然后在表中查找相应的值。图1展示了不同窗口宽度/级别的16位工业灰色图像的两个不同结果。

1说明了灰度图像的映射。左边的图像范围的灰色值是 [8200, 1.7] 并且右边一个是 [2.8, 3.6]。图1的上部代表16位灰度, 上面有两个窗口, 0-255 在图1的下部是一个8位显示映射。

如图1所示,不同的窗口参数构成了两个图像,虽然来自同一原始图像,但它们之间的感知差异非常明显。相对而言,左侧的窗口[820017000],清楚地展示了工件的结构,使缺陷明显可见。很明显,在窗口的右边图片[2800036000],丢失了一些有用的灰色值。

低于窗口下界的所有像素都被压缩到窗口值的下端,它表明了X射线衰减系数的种类以及工件的结构变化尤其是厚度的变化。因此,当工件的主体完全变成黑色时,图像无法满足要求的透明性。

2.2工件的直方图特性

本节分析从生产线上收集的铝铸轮x射线灰度图像的直方图。图2包含了6x光片,三种工作部件。每一对16位的图像,跟随相应的直方图,表示不同种类的产品。

通过分析工件的结构和对图2中三种图像的直方图的数据统计,可以在图2AC的直方图轴上看到灰度值高于30000的像素是黑色前景。类似地,图3中灰度值低于10000的像素是白色背景。对大量x射线的工件的观察显示,有用的信息不会出现在直方图中最暗或最亮的部分,通常会有一个连续的分布,其中的缺陷是介于两者之间的。这些是可以广泛应用于工件x射线图像的定性结论。

 

3 窗口调整算法

本节描述了基于工业灰度X射线照相的灰度直方图的短期能量的窗口调整算法,通过窗口重新映射增强了对比度。

参考语音信号处理[23,24},首先将灰度直方图分割成帧。N是帧的长度,那么第i帧的灰度等级是区间[(i-1)N,iN-1]内的值,i属于{x|1<=x<=[65,536/N],X属于Z}

Cj)是像素的数量,它的灰色值为j,让T表示图像中像素的总数,然后定义第i帧的短期能量:

在建立直方图和计算每一帧的短期能量之前,采用移动平均法作为平稳过渡。定义一个滑动窗口M,以M数据点的平均值为滑动窗口的中心点值。图3A是原始直方图,图3B是在M1200的平滑处理之后的结果。

 在上面的平滑之后,需要一个合适的帧长度N和帧移h来计算每一帧的短期能量,h是一个合适的步长。要找到Nh的最佳组合,我们用了8领域对比CNT8(p),作为比较原理的全局图像对比,在较大的经验范围内遍历它们(N [120, 240] , h [34, 54]).然后,通过获得最大的全局对比度,得到帧长度和帧频移的最佳组合。像素P的坐标图像(x,y),4个像素(x + 1,y)(x,y)(x,y 1),(x,y + 1)被称为4领域,N4(P)表示。N4(P)和其他4个像素,(x + 1,+ 1)(x1,y + 1)(x + 1,y 1),(x 1,y 1),N8(P)表示作为一个整体。我们利用像素的8邻域对比度作为全局图像的对比度。N8Pi)表示像素P8领域N8P)的第i个像素,图像的8领域对比CNT8P)定义如下:

fp)表示像素p的灰度级和Fmax代表整个图像中最大的灰度级。获取计算每个像素的CNT8p)的图像F的对比度,然后计算它们的平均值。

考虑到最高短期能量的前五帧的平均值作为参考值R,采用双阈值算法来判断一个帧是否属于全局图像的有用信息。设定了一对经验阈值,这个过程被描述为如下所述。

步骤一:高阈值Vh和低阈值Vl被实验设置为[VHVL]=[R/60R/120]

如果第i帧的短期能量EiN)满足VL<EiN<VH,标记为:未决(pending)帧

如果EiN>VH,标记为:有用的帧

如果EiN<VL,标记为:垃圾帧

S表示一组当前帧,包括有用的和未决的帧,让K成为集合S中元素数量的阈值,即S的基数:cardS)。

步骤二:判断当前帧的状态。如果当前帧被区分为有用的或未决的帧,将其放入当前集合S中。

步骤三:如果当前的帧被区分为垃圾帧,然后判断当前的集合S。如果集合S中所有帧都是未决帧,清空S,然后返回第二步去判断下一个帧。如果当前的S包含至少一个有用的帧,但不是所有的都是正在等待的帧,那么判断cardS)。如果cardS<=K,当前S是一个噪声部分,然后清空它,然后返回到步骤3来判断下一个帧。如果S包含至少一个有用的帧,cardS>K,那么当前S是一个指定的有用部分。将当前S中最高和最低的灰色值放入一个集合D中,用于记录指定有用部分中最高和最低的灰色值,然后清空S

步骤四:重复步骤2-3,直到所有的帧都处理完。

步骤五:找一个值j,满足下列条件:

     定义一个集合Q= {(2n|n Z, n card (D) /2)},j Q  i ðQ j ,        (Dj Dj+1) (Di Di+1),  Dj是调整窗口的灰度的上限   Dj+1是较低的灰度。

步骤六:重复步骤1-5,直到所有帧都被处理。

 

根据前面提到的步骤1到步骤6的描述,理解基于能量的窗口调整算法可能有点漫长。为了简明地演示该算法的总体框架,图4给出了该算法的流程图。

值得注意的是,参数R是为每个图像自动计算的,但是VHVL可能随着产品类型的变化而变化,比如产品系列的种类。

 

4实验结果和分析

本文采用传统的方法对图像质量进行了评价,主要比较了在文章[16 18]中由专家手动调整的自动窗口参数。我们从生产线上收集了528x射线照片,每张照片上都有不同的缺陷。该算法的有效性和可行性评估三个方面,包括对单个工件的图像比较、对不同工件的一系列图像的统计分析和对一系列产品图像的ROI的对比比较,表明用提出的方法,可以获得最佳的图像对比度。为医用x射线图像设计的另一种自动窗口方法用于比较图像的外观。最后,通过提出的算法对9个自动窗口x射线图像进行了调整,显示了领域专家对不同工件的良好视觉感知效果。

4.1单工件的比较分析

5中显示的图像是不同与WL的,但它们的原始图像来自于同一工件。图5a的左边手动调整的窗口[1700034000],右边的是本文算法调整的自动窗口[16,81132,788]。通过比较它们的最小和最大的灰色度(即上下窗口边界),可以发现两个窗口的界限值非常相似,而偏差分别为1.1%3.6%。图5b显示了全局灰度直方图自动调整窗口宽度/水平。由图5可以看出在手动和自动调整的图像中包含的黑白背景的冗余背景信息被丢弃。

4.2手动和自动窗口的统计分析

为了进一步证明手动和自动窗口之间的相似性,统计分析的使用如下。实验中使用的数据集包含26张独立的图片,这些图片来自528张有缺陷的在线作品。通过手工操作和自动算法分别获得它们的W-Ls数据,然后使用Kolmogorov-Smirnov判别方法[25]作为非参数测试去比较人工操作和自动窗口样本的概率分布。

XY表示手动和自动窗口的下界。图像样本的独立性和两组窗口参数意味着XY是独立的。xy分别表示XY的观察值。

平均值x=7942.346y=7915385,标准偏差sX=49.630sY=60.078

X N     (μ1, σ2 Y N (μ2, σ2)样本容量N=26m=26

要测试的假设是 否定区域是:


显著水平a=0.05P-Value=0.55>0.05,因此,H0不会被否定,这两个正态分布被认为具有相同的方差。然后讨论平均值

H0 :μ1 = μ2   H1 : μ1 = μ2,,否定区域是

显著水平α = 0.05。因为P—Value=0.09》0.025,H0不能被否定,所以这两个正态分布被认为具有相同的方差。

上述统计方法的结果表明,自动调整窗口的最小灰度与手动调整窗口的分布是相同的。对两种调整窗口的最大灰度的分布进行了相同的测试,其参数为p=0.61>0.05的方差,p=0.1>0.025的平均值,结果证明两者是相似的。通过对其他三种类型的铸造产品重复相同的假设测试程序,自动调整的窗口被认为是类似于由专家调整的手动调整窗口,其显著水平a=0.05

4.3对一种产品图像的ROI进行对比比较

在自动生产线上,有大量的工作部件需要检查,并且需要高速运行,因此,窗口通常是为一种产品设置的。除非它必须手动调整,否则它将不会对线路上的窗口参数进行任何更改,因此节省了工作时间。自动算法对每个图像进行调整窗口,这与实际的生产过程要求更加一致。因为即使是同一种类型的产品,图像的外观也会受到不同程度的影响,比如检查的位置、工作部件的方向,以及它们与x射线管和图像传感器的角度和距离。通过对图像对比度的全局优化,得到了窗口参数。因此,在不改变像素之间的灰度关系的情况下,自适应窗口技术不仅促进了人眼对在线图像的观察,而且增强了对机器自动图像识别的图像对比度。图6显示了自动窗口后图像中有缺陷的部分,在每幅图中都可以清楚地看到缺陷,而缺陷的清晰性和显著性都符合人类眼睛检测的主观要求的需要。缺陷区域是检验过程中最令人关注的部分,也有必要确保它有较高的对比度。下面的实验进一步说明了自动窗口与手动窗口比较的效果。

从同一类型的车轮产品的生产线上获得的21x射线无线电图像,具有不同的缺陷,实现了自动窗口。三名专业人员也会手动调整每个x射线。根据窗口的操作符将所有图像分组成4部分,然后在同一行图像中分割相同的位置和相同大小的缺陷区域。5所示的图像是第一排,由于排版的原因而舍弃了最后一个样本。图7描述了基于8个邻域对比度的21个代表性样本的对比度。

单个工业x射线照相(宽度:1024像素,高度:1024像素)的平均执行时间约为79 ms(英特尔核心CPU i7-4770 3.40 GHz8 GB RAM)。

4.4和其他算法的比较

由于在各种应用程序中存在不同的兴趣区域,所以需要在网上对各种各样的图像采集系统进行调整。由于直方图的轮廓在数千种方式上有差异,所以很难对所有应用程序都有一个通用的方法。目前,大多数现有的方法都是用于诊断医学图像,而不是用于高压工业X射线系统的使用。因此,本文仅与[16]方法相比较,图8显示了图像及其窗口水平。图8ac[16]中讨论的方法所产生的结果,而图8bd是所提出的方法所得到的结果。从图像的出现可以看出,[16]的方法对这种工业x射线的无线电技术表现不佳。工件内部的缺陷太暗,无法识别。相反,本文的方法适用于缺陷检测。

5结论

通过对一系列产品图像的ROI比较,我们可以看到,该算法在所有的窗口x射线图像中,通过不同的方法对其进行了最佳的图像对比。该算法自动调整的x射线图像也具有良好的视觉感知效果,得到了现场专家的认可。尽管这里提出的评估是初步的,但由于令人鼓舞的结果,对更大范围的前瞻性研究是合理的。本研究的进一步方向是将其他最先进的图像增强方法与建议的窗口调整算法结合起来,使x射线图像的质量更好。


原文:Automatic Windowing for Highly Dynamic Industrial X-ray Image Based on Short-Term Energy of Gray Histogram

下载链接:基于灰度直方图短时能量的高动态工业X射线图像自动窗口



阅读更多
换一批

没有更多推荐了,返回首页