我理解的SVPWM(二)

文章转载自:

我理解的SVPWM(二)一、内容概述本篇文章主要是对上篇文章《我理解的SVPWM(一)》发布后收到的好友问题进行汇总讨论。主要内容包https://mp.weixin.qq.com/s?__biz=MzI2MjExNDMzNQ==&mid=2247484363&idx=1&sn=d96573465b6f88756d0f644d22a1c5bb&chksm=ea515ebbdd26d7ad216f88a27cc88de04ee8e726069bbdab4a04b26322ee388bd4254eb3163a&token=115855852&lang=zh_CN#rd我理解的SVPWM(二) - 知乎一、内容概述本篇文章主要是对上篇文章《我理解的SVPWM(一)》发布后收到的知乎好友问题进行汇总讨论。 主要内容包括: 旋转相量与空间矢量的区别?为什么文章中基本矢量是Udc但是很多论文中基本矢量模长为 2/3U_{d…https://zhuanlan.zhihu.com/p/413662042建议进入以上链接查看原文,因为以下为复制过来的文章,里面许多公式复制不过来,缺少公式推导过程。

一、内容概述

本篇文章主要是对上篇文章《我理解的SVPWM(一)》发布后收到的知乎好友问题进行汇总讨论。

主要内容包括:

  1. 旋转相量与空间矢量的区别?
  2. 为什么文章中基本矢量是Udc但是很多论文中基本矢量模长为  ?
  3. 过调制的区域是哪些区域

二、旋转相量与空间矢量的区别

  • 首先,需要回忆一下复数的概念。

先引入虚数的概念,规定:

 (1)

 称为虚数单位。

我们把这样一个实数乘以  构成的数字叫作虚数。实数和虚数组合在一起,就构成了复数。

复数的代数表示形式为:

 (2)

复数的实部可表示为 

复数的虚部可表示为 

如图所示,取横坐标为实数轴,纵坐标为虚数轴,在此复平面上可以用一条从原点O
指向对应坐标点的有向线段(向量)表示。注意,这里是向量而不是相量。相量是在电路理论分析中定义的恒定频率的下的量,本质是复数(向量)。

图1

从图中可以看出,式2的形式可以改写为

 (3)

式中:

 --复数的模

 -- 复数的幅角

根据欧拉公式(关于欧拉公式的推导请参考文章“只有明白了欧拉公式你才能理解相量”)

 (4)

可得,

 (5)

用极坐标表示为

 (6)

  • 再来了解一下旋转因子  。

复数  是一个模长为1,幅角为 [公式] 的复数。任意复数 [公式] 乘以 [公式] 等于把复数F逆时针旋转一个角度 [公式] ,而模长不变,所以称 [公式] 为旋转因子。

  • 该相量要出场了。

相量只是表示时间正弦信号的一种简捷方法。相比于从初中阶段就开始学习的正余弦函数,相量直到大学阶段学习电工学时才引入。所以,相量看上去不那么熟悉,感觉比较难。但是,它可以使得正弦量的数学运算变得极其方便。

我们以三相电机W相的电流为例,它在时域可以表示为:

 (7)

则存在一个复指数函数

 (8)

 (9)

 (10)

其中,

 --复常数,其在复平面为模长为 [公式] ,幅角为 [公式] 的一个相量

 --旋转因子。

当上述复常量  乘以该旋转因子 [公式] 后,就变为一个旋转相量。该旋转相量在复平面实轴上的投影就是 [公式] ,下图只是一个示意图,意在说明旋转相量在实轴上的投影(实部)为正弦量。

图2

图3表示W相正弦电流的旋转相量示意图。

图3

同理,我们可以得到UV两相电流的旋转相量图。然后将它们画在一张图中。注意:旋转相量的模长  是固定的,不会随着角度的变化而变化。它们可以表示时域的正弦量,是因为它们在实轴的投影可以表示该正弦量。

图4

到此,旋转相量介绍完了,那何为空间矢量?

让我们把时域内流过UVW三相的相电流公式完整写在下面:

 (11)

 (12)

 (7)

从以上三个公式可以看出,UVW三相相电流在相位上相差  ,或者说是相差120度电角度的

另外,如下图,当U相通电时,根据右手螺旋定则,可以得到磁场方向如图所示。

图5

图片来自TI Motor Control Compendium

同理,可以获得V相和W相通电时的词磁场方向,如下图所示。

图6

图片来自TI Motor Control Compendium

图6显示电机三相绕组的磁场方向在空间上相差120度电角度分布

下面的动画展示了如何获得定子旋转磁场。这里不仅仅需要三相绕组在空间上呈现120度分布,同时要求输入三相相位互差120度的正弦交流电流。只有这样才会在三相空间坐标轴上产生跟随三相正弦电流来回脉动的磁场。如视频中右下角所示,如果我们把三个空间坐标轴上的磁场相量求和,则得到沿圆周旋转的空间矢量。我们可以通过控制三相电流来控制定子磁场合成矢量与转子磁场的角度,这也是磁场矢量控制的核心。

空间矢量旋转动画 来自TI

因此,空间矢量的幅值是随着时域电流的正弦变化而变化的,旋转相量的模长是固定不变的。只有在空间相差120度电角度分布,在时域相位也相差120度电角度,才会形成空间矢量。下图可以用来表示空间矢量。我们可以对比图4进行理解,很容易看出两者的区别。

图7

三、为什么文章中基本矢量是Udc但是很多论文中基本矢量模长为 2/3Udc

先把上篇文章中的图拿过来:

图8

这个图可以理解为是在极坐标下画出来的。基本矢量的模长为Udc,但是有些文献中的基本矢量是2/3Udc。

解释这个问题要用到Clark变换的知识,这里我们回忆下相关内容。

根据文献【现代永磁同步电机控制技术】可知,三相绕组可以用两相垂直绕组代替,原则是保证电机气隙内的磁动势必须等效,因为只有这样,坐标变换后才不会改变电动机内的气隙磁场分布,才不会影响机电能量转换。

先做如下约定:

 ---- 相电流合成矢量的旋转频率

 ---- 正弦相电流的幅值

 ---- UVW坐标系下的匝数

 ---- [公式] 坐标系下的匝数

磁动势是绕组匝数与电流的乘积,根据变换前后磁动势等效原则,可得

 (13)

 (14)

令,  ,K可以认为是三相坐标系和两相坐标系之间的匝比,则上式可变为

 (15)

 (16)

用矩阵表示如下:

 (17)

由于匝比取值不固定,需要增加约束,当采用等幅值约束时

 (18)

同理,可得电压的变换方式如下:

 (19)

可以看出变换前后电流的幅值保持不变,下图为变换前的输入信号,幅值为1。

图9

变换后的信号幅值仍然为1。

图10

拿第一扇区来分析,对于基本矢量V1,根据上篇文章《我理解的SVPWM(一)》可知,此时的相电压幅值如下:

 (20)

 (21)

 (22)

将式(20)(21)(22)带入(19),可得

化简后得:

很明显,基本矢量长度为2/3Udc,同时角度为0度。

同理,可以把其它几个基本矢量的坐标都确定下来。然后,使用matlab作图,可得六边形,且基本矢量长度为2/3=0.6667。

图11

四、过调制的区域是哪些区域?

根据参考文献的定义,只要在六边形内切圆外部到六边形外接圆的内部区域均为过调制区域。如下图灰色区域均为过调制区域。

图12

过调制的处理算法有很多种,比如参考文献1中将上图灰色区域分为两部分,分别采用不同的调制方式。

下面列出另外一种单片机比较容易实现的调制方式:

如图,在扇区I内,部分区域需求合成矢量的长度超出六边形的范围,这代表着零矢量的作用时间计算值为负值。这在物理世界是无法实现的,因此需要进行过调制处理。

图13

图中,只有当  时,T0的计算值才为负值。在该区域内改变相位,保持幅值,如图14所示。

图14

也就是说在未超出六边形的区域保持原来的圆形轨迹进行,该区域靠近六边形的顶角位置,此时T0的计算值不为负值。在  内保持需求合成电压矢量的幅值不变,但是以 [公式] 为界,在 [公式] 内使用角度 [公式] ,在 [公式] 内使用角度 [公式] 。

使用上述调制算法得到的相电压及电流输出波形如图,从图中可知该算法电流的谐波成分较多。

图15

 

具体有关过调制的内容较多,后续有机会单独拉出来讨论。

五、参考文献

【1】J. Holtz, W. Lotzkat, and A. M. Khambadkone, “On continuous control of PWM inverters in the overmodulation range including the six-step mode,” IEEE Trans. Power Electron., vol. 8, no. 4, pp. 546–553, 1993.

【2】S. Bolognani and M. Zigliotto, “Novel digital continuous control of SVM inverters in the overmodulation range,” IEEE Trans. Ind. Applicat., vol. 33, no. 2, pp. 525–530, 1997.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值