题目
题目背景
uim神犇拿到了uoi的ra(镭牌)后,立刻拉着基友小A到了一家……餐馆,很低端的那种。
uim指着墙上的价目表(太低级了没有菜单),说:“随便点”。
题目描述
不过uim由于买了一些辅(e)辅(ro)书,口袋里只剩M元(M≤10000)。
餐馆虽低端,但是菜品种类不少,有N种(N≤100),第i种卖ai
元(ai≤1000)。由于是很低端的餐馆,所以每种菜只有一份。
小A奉行“不把钱吃光不罢休”,所以他点单一定刚好吧uim身上所有钱花完。他想知道有多少种点菜方法。
由于小A肚子太饿,所以最多只能等待1秒。
输入格式
第一行是两个数字,表示N和M。
第二行起N个正数a i
(可以有相同的数字,每个数字均在10001000以内)。
输出格式
一个正整数,表示点菜方案数,保证答案的范围在intt之内。
输入输出样例
输入
4 4
1 1 2 2
输出
3
题目分析
每个物品一件且可随机选择组成不同的方案,很符合01背包的题目特点,如果数据范围小的话使用Dfs也未尝不可.
二维数组01背包
f[i][j]表示前i个菜品(对于每个菜品可选可不选)恰好花费j元的方案数
那么状态该如何转移呢?
我们考虑当前状态可以由那些状态变化而来
1.首先如果不选该件菜品那么f[i][j]=f[i-1][j]
2.如果选择该件菜品f[i][j]=f[i-1][j-w[i]]
注意两种方案都可以所以需要累加,且数组下标需要大于0.同样需要注意的初始状态需要赋值为1原因是存在购买一件商品就满足j元的情况.
#include<iostream>
#define N 110
using namespace std;
int n,m,a[N],f[N][10010];
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=0;i<=n;i++) //注意这里要从0开始
f[i][0]=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
f[i][j]+=f[i-1][j];
if(j>=a[i])
f[i][j]+=f[i-1][j-a[i]];
}
cout<<f[n][m];
return 0;
}
一维滚动数组优化
由于上面只使用的是f[i-1][j]的状态所以我们可以直接用f[j]代表f[i-1][j]来动态的储存数据;
这里需要注意循环需要倒着循环,其原因是为了防止当前循环数据被多次更新,这一点需要仔细的体会.
#include<iostream>
using namespace std;
int f[10005],w[105];
int main()
{
int n, m;
cin >> n >> m;
for (int i = 1; i <= n; i++)
{
cin >> w[i];
}
f[0] = 1;
for(int i=1;i<=n;i++)
for (int j = m; j >= w[i]; j--)//
{
f[j] += f[j - w[i]];
}
cout << f[m];
}