从WordCount看hadoop原理(1)——Map部分浅析

摘要:本文通过WordCount的几个关键点,把map部分的过程串起来,只是一个浅析。所谓,一滴水能够映现出整个太阳吧。

版本:hadoop1.0.1

以下是examples中的代码:

package org.apache.hadoop.examples;

import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {

  public static class TokenizerMapper 
       extends Mapper<Object, Text, Text, IntWritable>{
    
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
      
    public void map(Object key, Text value, Context context
                    ) throws IOException, InterruptedException {
      StringTokenizer itr = new StringTokenizer(value.toString());
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        context.write(word, one);
      }
    }
  }
  
  public static class IntSumReducer 
       extends Reducer<Text,IntWritable,Text,IntWritable> {
    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values, 
                       Context context
                       ) throws IOException, InterruptedException {
      int sum = 0;
      for (IntWritable val : values) {
        sum += val.get();
      }
      result.set(sum);
      context.write(key, result);
    }
  }

  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
    if (otherArgs.length != 2) {
      System.err.println("Usage: wordcount <in> <out>");
      System.exit(2);
    }
    Job job = new Job(conf, "word count");
    job.setJarByClass(WordCount.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}
step1:main方法

执行例子: bin/hadoop   jar   hadoop-examples-1.0.0.jar   WordCount    /test/input   /test/output

执行之后,main方法具体做了什么呢?

WordCount方法加载后,执行main方法,Configuration是配置类,Job是任务类。Job中设置了相关的方法类,最终都是采用映射的方式执行。如:

map方法:TokenizerMapper

reduce方法:IntSumReducer

Combiner方法:IntSumReducer

输入文件:otherArgs[0]

输出文件:otherArgs[1]

WordCount的功能是统计文章中字母的个数,执行过程如下图:


step2:TokenizerMapper

我们先看map方法:

public void map(Object key, Text value, Context context
                    ) throws IOException, InterruptedException {
      StringTokenizer itr = new StringTokenizer(value.toString());
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        context.write(word, one);
      }
    }
value是一行字符串,例如:aaa bbb ccc aaa。通过转换变成 aaa:1,bbb:1,ccc:1,aaa:1。写入context。

那inupt中的文件是如何被拆分成一行字符串,并且被map执行的呢?

step3:Mapper

从TokenizerMapper的继承类Mapper看,key和value是通过Context中获取的。那Context是从何而来?

public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {

  @SuppressWarnings("unchecked")
  protected void map(KEYIN key, VALUEIN value, 
                     Context context) throws IOException, InterruptedException {
    context.write((KEYOUT) key, (VALUEOUT) value);
  }
  
  public void run(Context context) throws IOException, InterruptedException {
    setup(context);
    while (context.nextKeyValue()) {
      map(context.getCurrentKey(), context.getCurrentValue(), context);
    }
    cleanup(context);
  }
}
step4:MapContext

Context的继承类MapContext,我们可以看到key和value,都是从RecordReader中获取的。

public class MapContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> 
  extends TaskInputOutputContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
  private RecordReader<KEYIN,VALUEIN> reader;
  private InputSplit split;

  public MapContext(Configuration conf, TaskAttemptID taskid,
                    RecordReader<KEYIN,VALUEIN> reader,
                    RecordWriter<KEYOUT,VALUEOUT> writer,
                    OutputCommitter committer,
                    StatusReporter reporter,
                    InputSplit split) {
    super(conf, taskid, writer, committer, reporter);
    this.reader = reader;
    this.split = split;
  }

  /**
   * Get the input split for this map.
   */
  public InputSplit getInputSplit() {
    return split;
  }

  @Override
  public KEYIN getCurrentKey() throws IOException, InterruptedException {
    return reader.getCurrentKey();
  }

  @Override
  public VALUEIN getCurrentValue() throws IOException, InterruptedException {
    return reader.getCurrentValue();
  }

  @Override
  public boolean nextKeyValue() throws IOException, InterruptedException {
    return reader.nextKeyValue();
  }

}
step5:TextInputFormat

mapreduce默认采用TextInputFormat,作为输入流:

  @SuppressWarnings("unchecked")
  public Class<? extends InputFormat<?,?>> getInputFormatClass() 
     throws ClassNotFoundException {
    return (Class<? extends InputFormat<?,?>>) 
      conf.getClass(INPUT_FORMAT_CLASS_ATTR, TextInputFormat.class);
  }

TextInputFormat中的LineRecordReader是什么呢?请看下一步。

package org.apache.hadoop.mapreduce.lib.input;

public class TextInputFormat extends FileInputFormat<LongWritable, Text> {

  @Override
  public RecordReader<LongWritable, Text> 
    createRecordReader(InputSplit split,
                       TaskAttemptContext context) {
    return new LineRecordReader();
  }

  @Override
  protected boolean isSplitable(JobContext context, Path file) {
    CompressionCodec codec = 
      new CompressionCodecFactory(context.getConfiguration()).getCodec(file);
    return codec == null;
  }

}

step6:LineRecordReader

RecordReader只是一个抽象类,从LineRecordReader中,我们大概可以看出一些端倪了。从FileSplit中获取路径,生成FSDataInputStream输入流,再封装成LineReader类,在nextKeyValue中,解析key和value。

public class LineRecordReader extends RecordReader<LongWritable, Text> {
  private static final Log LOG = LogFactory.getLog(LineRecordReader.class);

  private CompressionCodecFactory compressionCodecs = null;
  private long start;
  private long pos;
  private long end;
  private LineReader in;
  private int maxLineLength;
  private LongWritable key = null;
  private Text value = null;

  public void initialize(InputSplit genericSplit,
                         TaskAttemptContext context) throws IOException {
    FileSplit split = (FileSplit) genericSplit;
    Configuration job = context.getConfiguration();
    this.maxLineLength = job.getInt("mapred.linerecordreader.maxlength",
                                    Integer.MAX_VALUE);
    start = split.getStart();
    end = start + split.getLength();
    final Path file = split.getPath();
    compressionCodecs = new CompressionCodecFactory(job);
    final CompressionCodec codec = compressionCodecs.getCodec(file);

    // open the file and seek to the start of the split
    FileSystem fs = file.getFileSystem(job);
    FSDataInputStream fileIn = fs.open(split.getPath());
    boolean skipFirstLine = false;
    if (codec != null) {
      in = new LineReader(codec.createInputStream(fileIn), job);
      end = Long.MAX_VALUE;
    } else {
      if (start != 0) {
        skipFirstLine = true;
        --start;
        fileIn.seek(start);
      }
      in = new LineReader(fileIn, job);
    }
    if (skipFirstLine) {  // skip first line and re-establish "start".
      start += in.readLine(new Text(), 0,
                           (int)Math.min((long)Integer.MAX_VALUE, end - start));
    }
    this.pos = start;
  }
  
  public boolean nextKeyValue() throws IOException {
    if (key == null) {
      key = new LongWritable();
    }
    key.set(pos);
    if (value == null) {
      value = new Text();
    }
    int newSize = 0;
    while (pos < end) {
      newSize = in.readLine(value, maxLineLength,
                            Math.max((int)Math.min(Integer.MAX_VALUE, end-pos),
                                     maxLineLength));
      if (newSize == 0) {
        break;
      }
      pos += newSize;
      if (newSize < maxLineLength) {
        break;
      }

      // line too long. try again
      LOG.info("Skipped line of size " + newSize + " at pos " + 
               (pos - newSize));
    }
    if (newSize == 0) {
      key = null;
      value = null;
      return false;
    } else {
      return true;
    }
  }

  @Override
  public LongWritable getCurrentKey() {
    return key;
  }

  @Override
  public Text getCurrentValue() {
    return value;
  }

  /**
   * Get the progress within the split
   */
  public float getProgress() {
    if (start == end) {
      return 0.0f;
    } else {
      return Math.min(1.0f, (pos - start) / (float)(end - start));
    }
  }
  
  public synchronized void close() throws IOException {
    if (in != null) {
      in.close(); 
    }
  }
}
step7:MapTask

最后我们看下,mian启动后,如何将这些串联起来。MapTask中的几个关键点:

input初始化:

 org.apache.hadoop.mapreduce.RecordReader<INKEY,INVALUE> input =
      new NewTrackingRecordReader<INKEY,INVALUE>
          (split, inputFormat, reporter, job, taskContext);

mapper初始化:

 org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE> mapper =
      (org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>)
        ReflectionUtils.newInstance(taskContext.getMapperClass(), job);

mapperContext初始化,和执行:mapper.run(mapperContext);

 mapperContext = contextConstructor.newInstance(mapper, job, getTaskID(),
                                                     input, output, committer,
                                                     reporter, split);
input.initialize(split, mapperContext);
mapper.run(mapperContext);

step8:MapTask

再逆回去看,JobClient是如何实现的,过程如下图:


step9:JobTacker

(1)为作业创建JobInProgress对象。

(2)检查用户是否具有指定队列的作业提交权限。

(3)检查作业配置的内存使用量是否合理。

(4)通知TaskScheduler初始化作业。

step10:JobInProgress

JobInProgress生成这几个TaskInProgress,相关代码如下:

  TaskInProgress maps[] = new TaskInProgress[0];
  TaskInProgress reduces[] = new TaskInProgress[0];
  TaskInProgress cleanup[] = new TaskInProgress[0];
  TaskInProgress setup[] = new TaskInProgress[0];
step11:TaskInProgress

TaskInProgress生成MapTask或者ReduceTask对象,相关代码如下:

 public Task addRunningTask(TaskAttemptID taskid, 
                             String taskTracker,
                             boolean taskCleanup) {
    // 1 slot is enough for taskCleanup task
    int numSlotsNeeded = taskCleanup ? 1 : numSlotsRequired;
    // create the task
    Task t = null;
    if (isMapTask()) {
      if(LOG.isDebugEnabled()) {
        LOG.debug("attempt " + numTaskFailures + " sending skippedRecords "
          + failedRanges.getIndicesCount());
      }
      t = new MapTask(jobFile, taskid, partition, splitInfo.getSplitIndex(),
                      numSlotsNeeded);
    } else {
      t = new ReduceTask(jobFile, taskid, partition, numMaps, 
                         numSlotsNeeded);
    }
    if (jobCleanup) {
      t.setJobCleanupTask();
    }
    if (jobSetup) {
      t.setJobSetupTask();
    }
    if (taskCleanup) {
      t.setTaskCleanupTask();
      t.setState(taskStatuses.get(taskid).getRunState());
      cleanupTasks.put(taskid, taskTracker);
    }
    t.setConf(conf);
    t.setUser(getUser());
    if (LOG.isDebugEnabled()) {
      LOG.debug("Launching task with skipRanges:"+failedRanges.getSkipRanges());
    }
    t.setSkipRanges(failedRanges.getSkipRanges());
    t.setSkipping(skipping);
    if(failedRanges.isTestAttempt()) {
      t.setWriteSkipRecs(false);
    }

    activeTasks.put(taskid, taskTracker);
    tasks.add(taskid);

    // Ask JobTracker to note that the task exists
    jobtracker.createTaskEntry(taskid, taskTracker, this);

    // check and set the first attempt
    if (firstTaskId == null) {
      firstTaskId = taskid;
    }
    return t;
  }
step12:MapTask
这个时候再回到step7,整个map的过程就完整了。


最后:

Map Task的整体流程,可以概括为5个步骤:

1。Read:Map Task通过用户编写的RecordReader,从输入InputSplit中解析出一个个key/value。

2。Map:该阶段主要将解析出的key/value交给用户编写的map()函数处理,并产生一系列的key/value。

3。Collect:在用户编写的map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输入结果。在该函数内部,它会将生成的key/value分片(通过Partitioner),并写入一个环形内存缓冲区中。

4。Spill:即“溢写”,当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并,压缩等操作。

5。Combine:当所有数据处理完成后,Map Task对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。




参考资料:

《Hadoop技术内幕》——董西成。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值