这周讲座的内容是一篇2016年KDD的文章 “why should I trust you?” Explaining the Predictions of Any Classifier,作者是华盛顿大学的Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin。
最近欧盟出了一项法案:
“In the regulation of algorithms, particularly artificial intelligence and its subfield of machine learning, a right to explanation (or right to an explanation) is a right to be given an explanation for an output of the algorithm. ”
如果DNN仍然是无法解释的,那么很可能无法用于推荐等算法,因为无法向顾客解释其中的原理。
文章分为两个部分,第一个部分是如何解释一个模型的局部,第二个部分是用次模优化去解释整个模型。
一个合适的模型解释应该这样的:可以清楚地指出是哪些features对结果做出了贡献,每个features的贡献是多少,从而得出为何模型是这样预测的。

作者将他们的方法称之为LIME,Local Interpretable Model-Agnostic Explanations,先考虑局部的情况,用一个可以解释的分类器,比如说lasso或者svm等去局部逼近这个模型。原理很简单,先选定某一个的样本,附近的样本以一定权重来考虑,权重反比于其到选定样本的距离

本文介绍了2016年KDD论文“为什么我应该相信你?”中提出的模型解释方法——LIME(局部可解释模型无关解释)。LIME通过局部逼近复杂模型,解释特定预测的原因。此外,文章还探讨了使用次模优化选择代表性样本以解释整个模型的行为,实验证明这种方法在解释复杂模型方面有效,特别是在视觉或生物信息学领域。
最低0.47元/天 解锁文章
1477

被折叠的 条评论
为什么被折叠?



