讲座笔记 如何解释模型

本文介绍了2016年KDD论文“为什么我应该相信你?”中提出的模型解释方法——LIME(局部可解释模型无关解释)。LIME通过局部逼近复杂模型,解释特定预测的原因。此外,文章还探讨了使用次模优化选择代表性样本以解释整个模型的行为,实验证明这种方法在解释复杂模型方面有效,特别是在视觉或生物信息学领域。
摘要由CSDN通过智能技术生成

这周讲座的内容是一篇2016年KDD的文章 “why should I trust you?” Explaining the Predictions of Any Classifier,作者是华盛顿大学的Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin。

最近欧盟出了一项法案:
“In the regulation of algorithms, particularly artificial intelligence and its subfield of machine learning, a right to explanation (or right to an explanation) is a right to be given an explanation for an output of the algorithm. ”
如果DNN仍然是无法解释的,那么很可能无法用于推荐等算法,因为无法向顾客解释其中的原理。

文章分为两个部分,第一个部分是如何解释一个模型的局部,第二个部分是用次模优化去解释整个模型。

一个合适的模型解释应该这样的:可以清楚地指出是哪些features对结果做出了贡献,每个features的贡献是多少,从而得出为何模型是这样预测的。
这里写图片描述

作者将他们的方法称之为LIME,Local Interpretable Model-Agnostic Explanations,先考虑局部的情况,用一个可以解释的分类器,比如说lasso或者svm等去局部逼近这个模型。原理很简单,先选定某一个的样本,附近的样本以一定权重来考虑,权重反比于其到选定样本的距离

分布式系统的一致性模型是分布式计算中至关重要的概念,它定义了系统中不同节点间对共享数据达成一致性的条件和规则。在Nancy Lynch教授的课程中,这一主题被详细讲解,以帮助学生深入理解分布式系统中数据一致性的维持机制和挑战。 参考资源链接:[Nancy Lynch的分布式算法讲座笔记](https://wenku.csdn.net/doc/4k7zd4szz8?spm=1055.2569.3001.10343) 《Nancy Lynch的分布式算法讲座笔记》提供了对一致性模型的全面覆盖,包括严格一致性、顺序一致性、因果一致性、会话一致性以及最终一致性等多个模型。每个一致性模型都有其特定的定义、特点和适用场景,这些都是分布式系统设计时需要考虑的关键因素。 例如,严格一致性要求系统中的所有操作都是原子性的,且结果立即对所有节点可见。顺序一致性则放宽了这一要求,只要求操作的执行顺序保持一致,但不一定要求操作立刻对所有节点可见。因果一致性进一步放宽,只要求因果相关的操作顺序被系统中所有节点所遵守。会话一致性和最终一致性则分别关注操作在单个会话内的一致性和系统最终会达成一致性,但不强制操作的即时性和顺序性。 Nancy Lynch教授在课程中还会通过作业和额外讲座来加深学生对一致性模型的理解和应用。作业任务可能包括设计简单的一致性模型示例、分析不同模型的优缺点,或者在模拟环境中实现特定的一致性协议。而额外讲座可能会探讨一致性模型在现代分布式系统中的实际应用,如在区块链技术中的一致性维护。 通过这些课程材料,学生能够全面掌握分布式系统中的一致性模型,以及如何在实际的分布式算法设计中应用这些模型。这些知识对于学生从事分布式系统的设计与开发工作是极其宝贵的。为了更深入地理解这些概念,建议不仅学习课程讲义,还可以查阅相关的分布式系统教材或参考最新的研究论文,以获得更全面和深入的认识。 参考资源链接:[Nancy Lynch的分布式算法讲座笔记](https://wenku.csdn.net/doc/4k7zd4szz8?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>