问题生成(QG)总结

本文总结了问题生成(QG)的研究背景、应用场景、问题定义及深度学习在QG中的应用。QG能帮助构建和补充知识库,应用于教育、对话、医药等领域。seq2seq模型与注意力机制的发展为QG提供了新思路,如Cornell大学和北京大学的研究工作。此外,微软与蒙特利尔大学采用强化学习方法,以及将QA与QG视为对偶任务的尝试,进一步推动了QG技术的发展。
摘要由CSDN通过智能技术生成

这个暑假做了个QG的调研和复现了模型,做一个总结。

文中涉及的文章详细介绍可见论文阅读 Question Generation

  • 背景:
    为什么要研究QG?
    从人的经验看,好的学习者一定是擅长提问的。机器知识库作为“学习者”,也许可以利用主动提问来高效构建或者补充知识库,扩充数据集等等。
    现在的一些应用场景:在教育领域,帮助学生来提问;在对话领域,作为冷启动来开始一个话题或者通过提问来获得反馈;在医药领域,可以用于自动问诊系统,作为一种辅助工具等等,可以看到应用场景还是比较多的

  • 问题定义:
    从传统来说,QG的定义是给定一篇文章,里面包含一些事实,根据这些事实,从不同角度提问题。
    简单来看,QG问题可以定义为一个优化问题,在给定答案的前提下,最大化生成问题的概率。

  • 相关研究:
    seq2seq模型自从2014年google brain和yoshua分别提出后成为了机器翻译,文本生成领域一个非常热门的模型。同年,bahdanau等人提出了attention机制用来解决长距离依赖不强的问题,16年 ACL上提出了pointer softmax和copynet解决了OOV的问题,17年 ACL上Abigail See等人提出coverage机制解决了句子中重复生成的问题。

  • 将深度学习用于QG:
    之前的做法主要是基于规则的,从知识库中提取知识填入模板中。Learning t

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值