这个暑假做了个QG的调研和复现了模型,做一个总结。
文中涉及的文章详细介绍可见论文阅读 Question Generation
背景:
为什么要研究QG?
从人的经验看,好的学习者一定是擅长提问的。机器知识库作为“学习者”,也许可以利用主动提问来高效构建或者补充知识库,扩充数据集等等。
现在的一些应用场景:在教育领域,帮助学生来提问;在对话领域,作为冷启动来开始一个话题或者通过提问来获得反馈;在医药领域,可以用于自动问诊系统,作为一种辅助工具等等,可以看到应用场景还是比较多的问题定义:
从传统来说,QG的定义是给定一篇文章,里面包含一些事实,根据这些事实,从不同角度提问题。
简单来看,QG问题可以定义为一个优化问题,在给定答案的前提下,最大化生成问题的概率。相关研究:
seq2seq模型自从2014年google brain和yoshua分别提出后成为了机器翻译,文本生成领域一个非常热门的模型。同年,bahdanau等人提出了attention机制用来解决长距离依赖不强的问题,16年 ACL上提出了pointer softmax和copynet解决了OOV的问题,17年 ACL上Abigail See等人提出coverage机制解决了句子中重复生成的问题。将深度学习用于QG:
之前的做法主要是基于规则的,从知识库中提取知识填入模板中。Learning t