明天太阳照常升起的概率是多少?

博客探讨了拉普拉斯在《关于概率的哲学笔记》中提及的日出问题,指出蒲丰在《政治算术》中的概率计算错误。正确计算明日太阳升起的概率应为 (N + 1) / (N + 2),并依据第六和第七个概率计算原则进行了推导。博客内容涉及概率论和统计学在理解自然现象中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


最近在阅读拉普拉斯的《关于概率的哲学笔记》,



在第三章“概率计算的一般原则”最后提到一个日出问题:

如果我们不了解太阳运行的基本规则,根据统计,在过去的N天里,太阳每天都正常升起。那么,太阳明天照常升起的概率是多少呢?


拉普拉斯在书中,指出蒲丰在著作《政治算术》中的结果 1 - (1/2) ^ N 是错误的。

正确的结果应该是 (N + 1) / (N + 2) 。 下面, 我尝试推导了一下。


推导过程,应用到第三章中提交的一些概率计算原则:

1. 第六个原则: 假定我们观测到一个经常发生的事件, 每一个被认为是导致它的原因成立的可能性被这个事件发生的概率显示。于是某一原因成立的概率是一个分数,其分子是这个原因导致此事件的概率, 而其分母是所有各原因的类似概率的和; 如果这些不同的原因被事先考虑为不是等可能时,就必须将由每个导致此事件的原因的概率代之以它与此原因本身的可能性的乘积。这就是由事件到原因的机会分析这一分支的基本原则。


</

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值