一开始用的搜索,结果超时了。。。后来受到启发,是棋盘型dp,于是就这样干了。
map[i][j]记录第i行,第j列的那个格子作为最后正方形一个格子时,这个正方形的最大面积。
主要是找规律,对于一个格子map[a][b],能决定它大小的只有map[a][b-1]和map[a-1][b]。
我们发现,如果map[a][b-1]==map[a-1][b],那么需要查看map[a-map[a][b-1]][b-map[a][b-1]]:
如果map[a-map[a][b-1]][b-map[a][b-1]]不为0,那么map[a][b]就是这两者随便一个+1;
如果------------------------------------------------为0,那么map[a][b]就是这两者随便一个的值。
如果map[a][b-1]!=map[a-1][b],map[a][b]==两者中较小的那个+1。
注意:如果是在维基中做到这一题,并且用scanf输入的,那么快改成cin,因为数据的空格还是什么反正就是格式有问题,所以用cin忽略空格换行。
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <queue>
#include <vector>
using namespace std;
int n;
int shu[260];
int map[260][260];
int main()
{
//freopen("range.in","r",stdin);
//freopen("range.out","w",stdout);
cin>>n;
for(int i=1;i<=n;i++){
char a;
for(int j=1;j<=n;j++)
{
cin>>a;
map[i][j]=a-'0';
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(map[i][j]!=0){
if(map[i-1][j]!=map[i][j-1]){
map[i][j]=min(map[i-1][j],map[i][j-1])+1;
}
else if(map[i-map[i-1][j]][j-map[i-1][j]]!=0)map[i][j]=map[i-1][j]+1;
else map[i][j]=map[i-1][j];
}
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
for(int k=2;k<=map[i][j];k++)
shu[k]++;
}
for(int i=1;i<=n;i++){
if(shu[i]!=0){
cout<<i<<" "<<shu[i]<<endl;
}
}
return 0;
}